
1.  Introduction
Today Mars is a cold desert, but billions of years ago Mars had rivers and lakes. Early on, during the Late 
Noachian/Early Hesperian (∼3.6 Ga), water supply to crater lakes was large enough relative to evaporation that—
at least intermittently—liquid water overspilled to carve canyons (Fassett & Head, 2008). Later, runoff continued 
intermittently for ≳1 Gyr (e.g., Grant & Wilson, 2011; Holo et al., 2021; Kite, 2019), forming deltas and alluvial 
fans (e.g., Grant & Wilson,  2011; Salese et  al.,  2019) that were probably precipitation-fed (Kite,  2019), but 
these features were patchy (Wilson et al., 2021), with relatively few aqueous minerals visible from orbit (Pan 
et al., 2021), and lake overspills were less frequent (Goudge et al., 2016). At least some of the delta materials to be 
returned to Earth from Jezero crater likely date from the later era (e.g., Mangold et al., 2020; Salese et al., 2020). 
The data suggest a shift over time to wet events that were more short-lived, and/or to more arid climates. During 
this period, Mars was losing both CO2 and H2O, and the rate of asteroid impacts had declined to near-modern 
levels, yet volcanism and chaotic large-amplitude obliquity change continued (Haberle et al., 2017). Understand-
ing the cause of changing lake levels is key to understanding the habitable-to-uninhabitable transition of Mars' 
surface environment, but the change itself is, as yet, poorly quantified.

To understand Mars' wet-to-dry transition, we need to know trends over time in mean aridity, and the spatial 
distribution of aridity. Past aridity (specifically, aridity index (AI), the ratio of potential evaporation to precipi-
tation) can be constrained using paleolake size. The topographic catchment area feeding into the lake divided by 
paleolake size (the hydrologic X-ratio, XH) is, in hydrological steady state, approximately equal to the climatic 
AI. This is because water from the topographic catchment is routed into a small area (the lake), and evaporation 
from the basin is reduced in proportion to the smallness of the lake (Matsubara & Howard, 2009). Following 
(e.g.) Stucky de Quay et  al.  (2020), we assume that all meltwater/rainwater is routed to the lake, infiltration 
is minor, the lake level is in hydrologic steady state, and runoff production on the lake itself is small (so that 
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XH = (topographic catchment area not including lake area)/lake area). AI constrains paleoclimate models (e.g., 
Guzewich et al., 2021; Kamada et al., 2021; Kite et al., 2021; Turbet & Forget, 2021), and is a window into the 
evolution of ancient climate on Mars. Earlier-stage river-forming climates had XH = 3–7 (Fassett & Head, 2008; 
Matsubara et al., 2011; Stucky de Quay et al., 2020), perhaps less (Matsubara et al., 2013). However, perhaps 
surprisingly, few estimates exist for how AI changed over time on Mars (e.g., Horvath & Andrews-Hanna, 2017), 
and there has been no previous survey of XH for late-stage rivers/lakes.

In this study, we surveyed the interiors of all large, young craters (n = 212 areas) at latitudes between 40°N and 
40°S mapped as Late Hesperian or Amazonian impacts (from Tanaka et al. (2014)). The purpose of the latitude 
cut was to minimize overprinting by ice-associated processes. We also surveyed seven additional craters that 
have relatively well-preserved rims, denoting relative youth, and defining closed basins. Well-preserved rims 
correspond to a closed catchment in most cases. The water-worn landforms within these craters formed during the 
Late Hesperian and Amazonian—extending >1 Gyr after the valley networks (e.g., Grant & Wilson, 2011). Many 
workers have argued that the wet events were probably intermittent (e.g., Kite, 2019, and references therein), 
with no rivers flowing for most of the time. Our results constrain conditions shortly before the last drying-out 
of low-latitude rivers on Mars. We then compared to work on early-stage rivers to find aridity trends over time.

2.  Materials and Methods
To search for paleohydrologic proxies, we used Context Camera (CTX) data (Dickson et  al.,  2018; Malin 
et al., 2007), supplemented in a few places by High Resolution Imaging Science Experiment (HiRISE; McEwen 
et al., 2007) images. For topography, we used Mars Orbiter Laser Altimeter (MOLA) Precision Experimental Data 
Records (PEDRs; Smith et al., 2001), and in some places we used CTX/HiRISE DTMs (Mayer & Kite, 2016).

To constrain XH, we need estimates of paleolake area, A, and drainage area, D (XH = (D − A)/A = D/A − 1; 
Matsubara et al., 2011; Figure 1). Here, the “−1” corresponds to the assumption that no runoff is produced on 
the lake itself. To get paleolake area, thanks to the high quality of Mars topographic data (Smith et al., 2001) 
together with only minor postlacustrine modification, it is usually enough to know paleolake water level. 
However, water level changed over time and most geologic proxies for past water level on Mars are indirect, so 
these estimates are not precise and may correspond to only the maximum (highest) lake levels. From the water 
level, the contour-enclosed area corresponds to past lake area. Water level constraints include flat crater-bottom 
deposits (FCBDs) interpreted as playa/lake deposits, intrabasin spillways, and delta break-in-slope elevations. 
Upper-bound constraints come from the lowest (terminal) elevations of subaerial fans and channels, as these 
cannot form below lake level. For alluvial fan toes/channel termini, we used low-point elevations to draw an 
enclosing contour. The areas enclosed by these contours are upper limits on A. Many fans on Mars formed over 
long time scales (Kite et al., 2017), but channels can be carved rapidly (e.g., Whipple et al., 2000). Therefore, 
the XH obtained from setting lake elevation equal to a channel-stop elevation (requiring that the lake level did 
not exceed the channel-stop elevation for at least as long as it took to carve the channel) constrains lake level 
over a shorter-time scale than the constraint obtained from a fan terminus elevation. (In figures, we mark the 
shorter-time scale channel-stop lower limits on XH with red open triangles, and the longer-time scale fan toe 
lower limits on XH with red filled triangles.) Wind erosion reduces lake deposit extent relative to original extent; 
we use lake deposit area as a lower limit on A. Internal spillways also provide lower limits on A. The slope-break 
elevation of deltas provides a best estimate of past lake level. For the deltas we analyzed, layer-orientation data 
was not available, so our assessment was based only on geomorphic expression (modern topography), which is 
less definitive than stratigraphic methods (e.g., Tebolt & Goudge, 2022). Our approach treats the present-day 
topographic relationships between lake deposit outcrops and alluvial fan deposit outcrops as being representative 
of the topographic relationships between deposits when the rivers were flowing. Infrequently, we observe FCBDs 
topographically above fan toes (e.g., at Luba crater), presumably due to differential wind erosion. At Peridier, 
channels extend topographically below the FCBDs that we interpret as lake deposits, perhaps corresponding to 
a later wet episode. At all sites, small channels were neglected. We recorded only the constraints that (within a 
given drainage area) were the most hydrologically constraining.

Drainage areas were taken to be the entire area of the host crater, except when internal drainage relations (ridges, 
spillways) showed a smaller contributing area. Some crater interiors contained multiple drainage areas, due to 
internal drainage divides, which were accounted for separately. We assume that all topographic drainage area (and 
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not just the area upstream of observed channels) contributes water to the lake. If water was sourced by patchy 
snowmelt, then more runoff production per unit area would be needed.

Each proxy type has been described previously in detailed studies (e.g., Moore & Howard,  2005; Palucis 
et al., 2016). For example, flat-lying sediments interpreted as lake deposits are described by Grant et al. (2008) 

Figure 1.  Examples of paleohydrologic proxies (for details, see Figures S1–S4 in Supporting Information S1). (a) Flat crater-bottom deposit (FCBD) interpreted as a 
lake/playa deposit. Image is ∼10 km across. Elevation range 150 m. F10_039889_1567_XN_23S286W stereopair. 23°S 74°E. (b) Additional FCBD interpreted as a 
lake/playa deposit. Colored HiRISE DTM (ESP_065414_1495/ESP_065480_1495 stereopair) is 5.2 km across. Red-to-white elevation range is 200 m. The S rim of the 
impact crater has numerous erosional alcoves, linked by a depositional ramp to the FCBD. The depositional ramp is topped by sinuous ridges, one of which feeds into 
the FCBD. (c) Alluvial fan deposit (image is 5.5 km across, PSP_007688_1575/PSP_008545_1575 stereopair, elevation range 200 m). (d) Spillway (image is 29.7 km 
across, J15_050464_1996_XI_19N284W, elevation range 2,260 m). (e) Cartoon showing use of paleohydrologic proxy data to estimate X-ratio (XH) within a crater 10s 
of km across. Dashed lines correspond to contours at the elevations of geologic features. Area within contours gives lake area estimate. Dividing topographic catchment 
area by lake area estimate gives XH + 1.
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and Morgan et al. (2014). As far as we know, this is the first global survey for FCBDs that we interpret as lake 
deposits, so we provide more information on this proxy type below. Figures S1–S4 in Supporting Information S1 
(and Figures 1a and 1b) show many-km-wide crater-bottom deposits that have an elevation range of only a few 
meters. FCBDs frequently have slopes of 1/1,000, 10–20× flatter than nearby alluvial fans. FCBDs lack channels, 
show pits and grooves due to wind erosion, are usually found downslope from alluvial fans, and are typically 
bounded by outward-facing scarps. Internal layering and susceptibility to wind erosion suggest that these are 
indurated sedimentary deposits. Extreme flatness and location at the bottom of a crater indicate that aggradation 
was controlled by an equipotential, most likely liquid water. In some cases (Figure S2a in Supporting Informa-
tion S1), sinuous ridges that we interpret as capped by fluvial deposits connect to FCBDs (Davis et al., 2019), 
strengthening confidence in the lake-deposit interpretation of those FCBDs. HiRISE DTMs (Figures S2–S4 and 
S7 in Supporting Information S1) confirm these impressions and add detail on the gentle tilts of internal layers 
(typically ≲1°, consistent with flat after tracing and DTM errors are taken into account). These dips are signif-
icantly lower than those typical for Mars sediments interpreted as topography-draping air fall deposits (Annex 
& Lewis,  2020). Sediments may have been transported into the lakes by either wind or water. Internal-layer 
conformity with deposit tops proves that flatness of deposit tops is not a chance of erosion but rather a trace of 
depositional process. Layers are expressed due to contrasts in erosional resistance, which in turn might relate to 
changes in grainsize or composition. Although no spectral confirmation of aqueous minerals is available in most 
cases, and therefore it remains conceivable that some of these FCBDs might be impact melt, we interpret these 
as lake deposits. (Unlike impact melts, cataloged FCBDs are flatter, and lack flow texture, arcuate ridges, and 
crumple ridges). When topographic data were lacking, we marked the deposit as a “candidate” FCBD. It is likely 
that some lake deposits are not interpretable from orbiter data (false negatives). The Murray mudstones at Gale, 
interpreted as lake deposits by Grotzinger et al. (2015), would not be counted this way.

3.  Results of Survey: Latitude and Elevation Trends
Most craters show evidence for past liquid water (n = 118 basins; Figure 1). Presumably some craters lack evidence 
for liquid water because they postdate Mars' drying-out (Holo et al., 2021). Past lake size is constrained by the 
extent of FCBDs interpreted as lake/playa deposits (e.g., Morgan et al., 2014; n = 87 including 30 candidates; 
Figures S1–S4 in Supporting Information S1), as well as the elevations of features such as alluvial fan termini, 
channel termini, internal spillways, candidate shorelines, and the break-in-slope elevation of scarp-fronted depos-
its interpreted as deltas (n = 135; Figure 1).

Within craters, fans were built by flows from crater sidewalls, suggesting precipitation runoff was responsible 
for fluvial sediment transport (Lamb et al., 2006). Lake levels could have been maintained by water conveyed 
from crater sidewalls (by surface runoff or shallow groundwater flow) or alternatively, by deep-upwelling 
groundwater sourced from (e.g.) rain/melt recharge at ∼10 2–10 3-km scales (Horvath & Andrews-Hanna, 2017; 
Salese et al., 2019). We do not think that the lakes were flooded by catastrophic release of groundwater (Wang 
et al., 2005), because channels run up to ridgelines and because only some places saw water. Figure 2a shows 
the nonuniform distribution of craters with evidence for liquid water. Because we only survey craters that 

Figure 2.  (a) Aridity survey map (see Figure S5 in Supporting Information S1 for details). Black contours locate young impact craters (“AHi” units from Tanaka 
et al. (2014)) inspected for paleohydrology constraints. Black lines: −1,500 m elevation contour and ±10° latitude lines. Blue triangles = FCBDs (interpreted 
as lake deposits; unfilled = candidate), blue diamonds = deltas/shorelines, blue circles = internal spillways, red filled triangles = alluvial fan toes, red unfilled 
triangles = channel-stops. (b) Distribution of frequency of craters with paleohydrologic evidence with distance from the equator (see Figure S6 in Supporting 
Information S1 for details). Vertical bars correspond to √N uncertainty. Numbers in italics: per-bin sample size.
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formed relatively recently (Tanaka et al., 2014), our survey provides strong evidence that relatively recent rivers/
lakes were more frequent at off-equatorial latitudes (Figure 2b; Wilson et al., 2021). Lower-lying craters more 
frequently show evidence for past rivers/lakes (Figure S6b in Supporting Information S1; Kite et al., 2022).

Figures 3 and 4 sum up survey results. Typical XH was 7–38 (median fan terminus constraint to median lake 
deposit constraint), corresponding to arid-to-hyperarid conditions, with deltas and overspill channels recording 
semiarid conditions (median XH = 4). This is more arid than that reported for early lakes (by, e.g., Matsubara 
et  al.  (2011)), XH,ancient  =  5  ±  2, and is similar to that of modern Western Nevada (XH  =  19.7 according to 
Matsubara et al. (2011)). In the southern midlatitudes (high ground), late-stage XH < 10 is less common south 
of 10°S (Figure 4)—in other words, there is very little evidence for conditions moister than modern Nevada. 
By contrast, in the northern midlatitudes and at the equator (lower ground), the break-in-slope elevations of 
scarp-fronted deposits interpreted as deltas (filled blue diamonds in Figure 4) indicate relatively big lakes. The 
difference between hemispheres gives a p-value of 0.002, and XH < 10 is found mostly at <−1,500 m elevation 
(p = 0.01). In summary, at high elevations, the central aridity estimate is more arid than modern Nevada. At lower 
elevations, some locations were less arid than modern Nevada (at least intermittently), similar to aridity estimates 
for the earlier-stage river era.

4.  Aridity Change With Time: High and Dry
Late-stage rivers were apparently more spatially patchy than early-stage rivers. Where runoff did occur, we find 
(on average) a record of more arid climates. For the early-stage lakes (∼3.6 Ga), Matsubara et al. (2011) report 
XH,ancient = 5 ± 2. This is comparable to the XH for the U.S. Great Basin wet period ∼20 Kya (XH ≈ 3.5 according 
to Matsubara et al. (2011)). These data indicate a climate trend, to more arid climate (our preferred explanation), 
or alternatively toward briefer wet events (disfavored by our data, Supporting Information S1), on global average. 
Southern midlatitudes show a shift over time toward smaller lakes, but intermittent wet climates (semiarid to arid) 
persisted near the equator and in the northern midlatitudes. Considering only sites with evidence for late-stage 
aqueous activity, aridity increased greatly at high elevations but only slightly at low elevations (Figure 5). Simi-
lar XH at low elevations during the Noachian through Amazonian is consistent with the paucity of late-stage 
low-latitude lake overspills (Goudge et al., 2016). The high-relief rims of the young craters surveyed in this study 
make overspill more difficult for a given XH than for the more muted rims of ancient craters.

Intriguingly, Stucky de Quay et  al.  (2020)'s analysis of early-stage lake overspills shows (their Figure 4) the 
strongest requirements for humid conditions at high elevation (Figure S9 in Supporting Information  S1). 
Stucky de Quay et al. (2020)'s 96-paleolake data set consists of “hydrological systems in which the morphologies 
indicated precipitation as a main water source, either as rain or snow […] open-basin and closed-basin lakes fed 
by dendritic valley networks with a main trunk having a Strahler order of ≥3” (the less selective data set of Fassett 

Figure 3.  Kernel-density estimates of late-stage aridity. The aridity that we estimated from late-stage geologic proxies is 
overall greater than that for early-stage rivers: double-headed arrows at top of plot correspond to Matsubara et al. (2011) 
estimate for early-stage rivers, XH,ancient = 5 ± 2. (a) Overall aridity increases with time. (b) High elevations dried out sooner. 
Here, paleo-aridity is assumed to simultaneously satisfy both geomorphic aridity upper limits and geomorphic aridity lower 
limits recorded within the same basin. Modern-Earth aridity values shown by black triangles are from Matsubara et al. (2011; 
for Western Nevada). Log-uniform prior on XH = {0.1, 10 4}; Figure S7 in Supporting Information S1 shows sensitivity test.

 19448007, 2022, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101150 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [23/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

KITE AND NOBLET

10.1029/2022GL101150

6 of 10

Figure 4.  Late-stage aridity constraints. Blue triangles are upper limits on aridity (e.g., lake deposit extent), red triangles 
are lower limits on aridity (e.g., from alluvial fan termini), and blue diamonds are best-estimates of lake elevation (e.g., 
from a delta top). (a) XH versus elevation. Blue triangles = FCBDs (interpreted as lake deposits; unfilled = candidate), blue 
diamonds = deltas/shorelines, blue circles = internal spillways, red filled triangles = alluvial fan toes, and red unfilled 
triangles = channel-stops. Numbers correspond to the number of constraints lying entirely inside a rectangular region. Gray 
lines connect lowest and highest constraints for a single basin. (One −7,500 m data point is cropped). (b) XH versus latitude. 
(c) XH versus crater diameter. Black dashed line highlights where small lake deposits might be missed by survey.
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and Head (2008) shows only a weak trend toward more-humid conditions at high elevation). Stucky de Quay 
et al. (2020)’s result is the opposite of our late-stage result, suggesting a reversal of the elevation dependence of 
X-ratio as Mars evolved.

5.  Discussion and Conclusions
The late-stage trend to higher XH at high elevation (Figure 3) can be explained by a change in the strength of green-
house warming over time, such that highlands became almost always too cold for liquid water (Kite et al., 2022). 
In this scenario, higher-elevation lakes would have less meltwater runoff. Alternatively, in a very-warm-cli-
mate scenario (too warm for ground ice), if infiltration became an important water sink for lakes, then high 
lakes would lose water while water would upwell at low elevations. Thus, a decline in Mars' groundwater table 
(e.g., Andrews-Hanna & Lewis, 2011; Jakosky, 2021; Salese et al., 2019) might also explain Figure 3 trends. 
A third possibility is that water vapor was sourced from evaporation at very low elevations, and that highlands 
were most horizontally distant from the water source and therefore water-starved (Turbet & Forget, 2019). We 
favor the snow/ice-melt explanation because snow/ice-melt can be patchy and the late-stage erosion is patchy. 
Snow/ice-melt is consistent with evidence for equatorial thermokarst (Warner et al., 2010).

In the future, measurements of the grain size of clasts moved by late-stage rivers might be decisive in distin-
guishing between the drying-while-warm versus drying-while-cool scenarios for Mars. At Gale crater, the rover 
Curiosity has encountered proxies for aridity such as mudcracks (Stein et al., 2018). Our data include late-stage 
Gale lakes (Palucis et al., 2016), conceivably preserved at Gediz Vallis ridge. Thus Curiosity's traverse may allow 
ground-truthing of the scenario in Figure 5.

Our results reinforce the interpretation (e.g., Irwin et al., 2015) that a hydrologic cycle fueled late-stage rivers. 
River/lake sediments found within large “host” impact craters often encapsulate smaller impact craters, which 
today appear partially exhumed (Table S1 in Supporting Information  S1). In order for these smaller craters 
to accumulate, a time interval of ≥0.2 Gyr between the formation of the “host” craters and the end of river 
activity is required. This disproves the hypothesis (Mangold et al., 2012) that these rivers were triggered by the 
energy of the impact that formed the “host” crater. This is because ≥0.2 Gyr is too long for the energy of the 

Figure 5.  Graphic summary of results.
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“host”-crater-forming impact to contribute to fan formation (Kite et al., 2017; Table S2 in Supporting Informa-
tion S1). The distribution of XH with crater size suggests wet events lasting at least decades (Supporting Informa-
tion S1), consistent with the steady state assumption made here.

The northern hemisphere XH permits a late-stage ocean, consistent with some models (e.g., Di Achille & 
Hynek,  2010; Schmidt et  al.,  2022). However, the case for a Mars ocean remains equivocal: delta locations 
suggest deltas drained into large lakes, not an ocean (e.g., Rivera-Hernández & Palucis, 2019).

Mars has many relatively young exit-breach craters or “pollywogs” (Wilson et al., 2016). Almost all are omit-
ted from of our study, because of their small size and location poleward of 40°. Pollywog overspill (Warren 
et  al.,  2021) would suggest XH < 1, very different from the aridity of the low/midlatitudes, or, alternatively, 
groundwater release. It also remains to be determined whether late-stage lake overspills in Valles Marineris (e.g., 
Warner et al., 2013) match the within-crater XH pattern (Figure 4).

A limitation of our study is that we do not distinguish between playas and perennial lakes. However, if smaller 
lakes dried up seasonally, then that would make the annual-average climate even more arid than reported here, 
and accentuate the “high-and-dry” pattern, so this limitation is not severe.

In summary, a globally distributed survey of paleohydrologic proxies for late-stage river-forming climates 
(Figures 1 and 2), when compared to previous work on early-stage river-forming climates (Figure 3), indicates a 
climate trend, to more arid climate (our preferred explanation), or, alternatively, toward briefer wet events (disfa-
vored by data; Supporting Information S1). Southern midlatitudes show a shift toward smaller lakes over time, 
but intermittent wetter climates persisted near the equator and in the northern midlatitudes. These results sharpen 
our view of Mars' wet-to-dry transition, but overall, it is surprising that this major environmental catastrophe 
remains so poorly understood. The challenge to models of Mars' climate (e.g., Guzewich et al., 2021; Kamada 
et al., 2021; Kite et al., 2021; Turbet & Forget, 2021) and climate evolution (e.g., Ramirez & Craddock, 2018; 
Wordsworth et al., 2021) is now to explain these data.
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