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If impacts caused degassing of incoming p}afxetes.imals,lo;'il core fg‘-i
mation led to massive early degassing of Eartl.ls interior, VO atiles wou
have been concentrated to the surface in earhest. Earth’s history, C.onsls-‘
ateiit with the evidence cited above for a substantial ocean at that t,nne, If
early degassing were so efficient, we might expect much of Ms vola-
d ocean. Continued vol-

1o budget to be initially in the atmosphere an
i uld have led to further addition of volatiles to the

canism over time WO :
Earth's volatile budget to be in the atmosphere

surface, causing most of her
and ocean. Surprisingly, however, substantial H,0 and CO, remain in
Farth’s interior. Volcanoes today are still emitting volatiles, and these
permit estimates of the concentrations of volatiles in the mantle. While

the concentrations are low, the volume of the mantle is so large relative

alf of Earth’s CO, and H,0 still reside in the in-

to the crust that about h
terior. Another entire ocean volume remains trapped in the solid Earth.
ns over time would generate an

Furthermore, current volcanic emissio
ocean volume of water in only 2-3 Ga, and yet as we saw above there is
evidence for an ocean prior to 4 Ga. Has the ocean then increased sub-
stantially in size?

Studies of rocks from the continental crust can be used to show that
sea level has remained remarkably constant through Earth’s history, im-
plying near constancy of the volume of the oceans and hence water at
the surface. Since volatiles (including H,0) are steadily being supplied
from Earth’s interior, how can the volume of H.O at the surface ave

.......

of early Earth's history and continued volcanism, how can so many ola-
tiles remain in Earth’s interior?
These questions require a consideration of the surface volat ile budget,
not just as a progressive degassing but also as a dynamic process involl
110N
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ing fluxes amnong Earth's reservoirs and space, causing volatile aaaitiot

and removal. Water and C02 removal could occur by volatile loss 1¢
v 01

o by returning H,O and CO, to the interior during recycling
Earth’s plates. “
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ature depends not only on the amount of sunlight it
receives but also on the reflectivity of its surface and on the content of

so-called gr enhouse gases in its atmosphere. If a planet had the surface
e r!ﬁes similar to those of a blackbody, its temperature w0u1. A be

prope t of sunlight reaching its surface. To qualify as

fixed solely by the amoun _ _ ;
ackbody, the surface of an object must be nonreflecting—i.e., all the
ablackbody; 1 ° diated as infrared light

sunlight reaching it must be absorbed and rera
(Fig '9.7). Also, there can be no gases in its atmosphere that absorb out-
: bing infrared light. Were Earth a blackbody it would have a mean sur-

g
temperature of about 5°C (see Table 9-2).
i s a perfect blackbody. All have an

No planet we know of, however, i .
albedo that indicates what proportion of the light is reflected. The higher
the albedo, the more light is reflected and the cooler will be the planet.
s much to do with the amount and state of

The reflectivity of a planet ha

its water, Ocean water has a Jow reflectivity; ice and clouds have a high

reflectivity. As plant leaves absorb nearly all the light they receive, there

is little reflection from a forest. By contrast, about half the light reaching
e already pointed out, the extent of plant

bare soil is reflected. As we hav:
on of rainfall. On Earth, clouds, ice caps,

cover depends on the distributi
and soils reflect back to space a sizable portion of the sunlight imping-

ing on Earth, leading to an albedo of about 0.3. Thirty percent of the
sunlight is reflected back into space and plays no role in heating Earths
surface. Were this the only deviation from the ideal blackbody, Earths
surface temperature would average —20°C and all water would be fro-

zen. High albedo lowers planetary temperature.

The factor that counterbalances albedo and warms a planct is the
greenhouse effect caused by particular molecules of gas in the planetar)
atmosphere. All molecules with three or more molecules are greenhouse
gases. Such molecules absorb energy of packets of infrared light through
the vibrations of their molecular bonds (Fig. 9-8). Incoming solar radia-
tion has short wavelengths that are not absorbed by greenhouse gase>
o the energy makes it through the atmosphere to the surface. When the
hght is radiated from the surface, however, the wavelengths of light €O
1f68p.ond with planetary temperatures of about 300 K and are
the infrared. These wavelengths are effectively absorbed DY S
gases. Important greenhouse gases in Earth’s atmosphere ar¢ Wa,te-r :15‘;}

(HZ.O)., carbon dioxide (COZ), methane (CH,), nitrous oxide (N
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t is emitting today. Using ;}Ezrtuh i
»dy surface temperature ©
-2 and illustrated in Figure 9-9.
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