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Abstract

The gas giant planets in the Solar System have a retinue of icy moons, and we expect giant exoplanets to have
similar satellite systems. If a Jupiter-like planet were to migrate toward its parent star the icy moons orbiting it
would evaporate, creating atmospheres and possible habitable surface oceans. Here, we examine how long the
surface ice and possible oceans would last before being hydrodynamically lost to space. The hydrodynamic loss
rate from the moons is determined, in large part, by the stellar flux available for absorption, which increases as the
giant planet and icy moons migrate closer to the star. At some planet–star distance the stellar flux incident on the
icy moons becomes so great that they enter a runaway greenhouse state. This runaway greenhouse state rapidly
transfers all available surface water to the atmosphere as vapor, where it is easily lost from the small moons.
However, for icy moons of Ganymede’s size around a Sun-like star we found that surface water (either ice or
liquid) can persist indefinitely outside the runaway greenhouse orbital distance. In contrast, the surface water on
smaller moons of Europa’s size will only persist on timescales greater than 1 Gyr at distances ranging 1.49–0.74 au
around a Sun-like star for Bond albedos of 0.2 and 0.8, where the lower albedo becomes relevant if ice melts.
Consequently, small moons can lose their icy shells, which would create a torus of H atoms around their host
planet that might be detectable in future observations.
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1. Introduction

One of the major results of exoplanet discoveries is that giant
planets migrate (Chambers 2009). This was first deduced from
hot Jupiters, and although these are found around 0.5%–1% of
Sun-like stars (Howard 2013), hot Jupiters are not the only
planets to migrate and giant planet migration is likely
widespread. Indeed, such migration probably occurred in the
early solar system (Tsiganis et al. 2005).

All the giant planets in the solar system have a collection of
icy moons. We expect that similar exomoons orbit giant
exoplanets and that these moons would likely migrate along
with their host planet. If a giant exoplanet were to migrate
toward its parent star, icy moons could vaporize, similar to
comets approaching the Sun, and develop atmospheres. In
addition, they could melt and maintain liquid surfaces as they
migrate inwards, which could be potentially habitable environ-
ments. Such a moon would have an atmosphere primarily
controlled by the vapor equilibrium set by the surface
temperature and the rate of hydrodynamic escape to space.
As such, the longevity of the water shell and atmosphere will
depend primarily on the distance to the host star and the
exomoon radius and mass.

Several such bodies exist in the solar system where the
atmospheric thickness is determined by vapor equilibrium with
a condensed phase, i.e., the Clausius–Clapeyron relation for the
relevant volatile. Let us call such atmospheres Clausius–
Clapeyron (C–C) atmospheres. The N2 atmospheres on both
Triton and Pluto are examples of C–C atmospheres, where the
surface vapor pressure is in equilibrium with the N2 surface ice
at the prevailing temperature for each body. The present
Martian atmosphere is another C–C atmosphere since the polar
CO2 ice caps at ∼148 K buffer the atmosphere to ∼600 Pa
surface pressure (Leighton & Murray 1966) (see (Kahn 1985)
for an explanation over geologic timescales).

For an icy exomoon migrating toward its parent star, the
atmospheric water vapor will be controlled by the availability
of surface water and temperature. Very deep ice and ice-
covered oceans are possible on these moons given that water
can account for ∼5%–40% of the bulk mass of icy moons in
the solar system (Schubert et al. 2004). However, the small
mass of exomoons and relatively high stellar flux as the
exomoon migrates toward the star make water vapor
susceptible to escape. Assuming exomoons are of comparable
size to the moons found in the solar system, this study looks at
the end-member case of how rapidly a pure water vapor
atmosphere would be lost hydrodynamically during exomoon
migration. The migration of exomoons is essential if icy moons
of Ganymede’s size are to retain their surface water for more
than 1 Gyr in the habitable zone of a Sun-like star. If a
Ganymede-like icy moon formed in the habitable zone of a star
(or migrated there shortly after formation) the high XUV flux
from the young star could rapidly erode its atmosphere (Heller
et al. 2015; Lammer et al. 2014). Therefore, this study looks at
the longevity of surface water on icy moons that migrate
toward their host star after this period of intense XUV-driven
hydrodynamic escape.
Hydrodynamic escape is a form of pressure-driven thermal

escape where the upper levels of an atmosphere become heated
and expand rapidly, accelerate through the speed of sound, and
escape to space en masse (Hunten 1990). An important process
in atmospheric evolution, hydrodynamic escape likely occurred
during the formation of the terrestrial atmospheres (Tolstikhin
& O’Nions 1994; Pepin 1997; Kramers & Tolstikhin 2006;
Kuramoto et al. 2013). Moreover, hydrodynamic escape has
been observed on exoplanets such as the gas giant HD
209458b, which orbits a Sun-like star at 0.05 au and has hot H
atoms beyond its Roche lobe, presumably deposited there by
hydrodynamic escape (Vidal-Madjar et al. 2004; Linsky et al.
2010). The closer a body is to its parent star, the more effective
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the hydrodynamic escape, and the smaller the body, the more
easily an atmosphere is lost (e.g., Zahnle & Catling 2017).

The longevity of an atmosphere and icy shell will depend
primarily on temperature, set in large part by the stellar flux
available for absorption. As an ice covered exomoon moves
toward its parent star, heating will cause more water vapor to
enter the atmosphere, hastening the loss rate. In addition, this
water vapor will provide a greenhouse effect, further warming
the moon. At a certain exomoon–star distance, the water vapor
atmosphere will impose a runaway greenhouse limit on the
outgoing thermal infrared (IR) flux from the exomoon. If the
absorbed stellar flux exceeds this limit, the exomoon surface
will heat rapidly until all available water is in the atmosphere as
vapor. This limit represents the distance at which all surface
water will be transferred to the atmosphere where it will be
rapidly lost.

2. Methods

We consider three cases of hydrodynamic escape: (2.1) an
isothermal atmosphere where the atmospheric temperature is
set by incoming stellar flux and equal to the effective
temperature; (2.2) a vapor saturated atmosphere where the
temperature and humidity profiles of the entire atmosphere are
dictated by the C–C relation; and (2.3) an isothermal
atmosphere similar to (2.1), but the surface temperature, and
the isothermal atmospheric temperature, are increased from the
effective temperature by the total greenhouse warming of the
water vapor atmosphere. We chose the isothermal and C–C
cases because they present upper and lower limits on the rates
of hydrodynamic escape, respectively, as described below.
Figure 1 provides a conceptual picture of the model.

For a pure water vapor atmosphere around a Sun-like star, an
isothermal atmosphere at the effective temperature represents

the greatest possible temperature at the top of the atmosphere to
drive hydrodynamic escape. Water vapor radiates in the IR
more efficiently than it absorbs sunlight, so the radiative-
convective temperature for a pure water vapor atmosphere will
be lower (Pierrehumbert 2010; Robinson & Catling 2012). As
such, the isothermal atmospheric approximation provides an
upper bound on the atmospheric loss rate. In contrast, the
lowest possible temperature to drive hydrodynamic escape is
the saturated case, where the temperature and pressure at all
heights are set by the C–C relation, which is defined by
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for reference temperature T0 at reference pressure P0, where R
is the universal molar gas constant, and Lv is the latent heat of
vaporization for water (e.g., Pierrehumbert 2010). The surface
temperature is assumed to be in equilibrium with the incoming
stellar flux, cooling associated with mass loss via hydrody-
namic escape and latent heat of evaporation. If the temperature
were to decrease with altitude faster than the C–C relationship,
the water vapor would condense out resulting in a C–C curve
that, when extrapolated, would result in a surface temperature
no longer in equilibrium with incoming stellar flux and escape.
Therefore, the hydrodynamic loss rate of a pure water vapor
atmosphere is bounded by the isothermal and saturated cases,
which we will now consider in turn.

2.1. Isothermal Case

In the blackbody approximation, radiative cooling is given
by sT 4 at isothermal temperature T, allowing a straightforward
formulation of escape versus radiative cooling. As such, the
first order global energy balance for an icy exomoon is between

Figure 1. Conceptual visualization of the 1D hydrodynamic escape model. The incoming absorbed stellar flux, given by -( )A F1 4 1 s, heats the exomoon surface, for
Bond albedo A and stellar flux Fs. The exomoon will remain in thermal equilibrium by evaporating water vapor, losing mass via hydrodynamic escape, and radiating
in the thermal infrared. The thermal infrared radiation is given by sT 4 (σ is the Stefan–Boltzmann constant, T is the surface temperature) in a blackbody
approximation. The outward radial flow velocity, u, increases monotonically until it surpasses the isothermal speed of sound, uc, at the critical radius, rc, where the gas
is still collisional. Beyond the sonic level, u continues to rise and soon surpasses the escape velocity vescape. The exomoon surface is at radius rs with atmospheric near-
surface density rs and outward radial surface velocity us. See Equation (2) for the global energy balance.
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incoming stellar flux versus the energy flux lost to vaporizing
the water, lifting molecules out of the gravity well, and
radiative cooling, i.e.,

r s- = + + 
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Here, Fs is the incoming solar flux available for absorption, A is
the Bond albedo, σ is the Stefan–Boltzmann constant, rs is the
surface radius where the atmospheric density is rs, such that
r us s is the mass flux given an outward radial flow velocity at
the surface us, G is the gravitational constant, andM is the mass
of the exomoon.

In addition to the C–C relationship (Equation (1)), three
equations are needed to derive the steady state, hydrodynamic
atmospheric loss in the isothermal approximation (e.g., Catling
& Kasting 2017, Ch. 5). The first is steady state mass
continuity, given by

r
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where r is the radial distance from the planet’s center, u is the
outward radial flow velocity, and ρ is the atmospheric density.
Steady state momentum conservation is expressed as
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with gravity = -g GM r2 and pressure p. Finally, the
equation for energy balance is given by Equation (2).
Combining Equations (1)–(4) an analytic expression for the
isothermal atmospheric mass loss rate in kg -s 1 is given by (see
Appendix A for the derivation):
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where u0 is the isothermal sound speed given by =u kT m0
2

with Boltzmann constant k and mean molecular weight m, and
rm is the mean density of the exomoon (assumed -2 g cm 3).
The atmospheric surface density, rs, is set the by C–C equation
for the saturation vapor pressure of water at the prevailing
temperature.

For time averaged mass loss rate, M̄ , the lifetime of the
exomoon surface water is given by

t = ¯ ( )M

M
. 6Water

Water

For an upper limit, we assume the total mass of water present
on the exomoon surface, MWater, is 40% of the bulk mass.
However, even if 5% water were used (the lower limit for
Europa (Schubert et al. 2004)), from Equation (6) we can see
that it would translate to a change in tWater by a factor of 8,
compared to 40% water. From Equation (5) we see that Ṁ , and
hence tWater, has an exponential dependence on mass, so we
would anticipate that the difference between 5% and 40% water
is not the major factor determining tWater, which is borne out by
our results. In addition, if substantial water vapor is lost the
bulk density of the moon, rm may increase over time. However,
from Equation (5) we see that the exponential term scales as

r- Mm
1 3 2 3 with M2 3 largely determining the loss rate, so the

sensitivity to rm is small.
It is important to note that in Equation (5) we have assumed

the mass loss rate, Ṁ , is sufficiently small that energy balance
is dominated by radiative loss. This is indeed the case for
exomoons of interest in this paper, where the low temperature
water vapor atmospheres last for more than 1 Gyr. The surface
pressures are well below ∼500 Pa until the runaway green-
house limit is reached. For bodies with rapid hydrodynamic
escape the numerical approach defined in Appendix A is
appropriate.

2.2. Saturated Temperature Profile Case

The saturated case is derived from the same equations as the
isothermal case (Equations (1)–(4)) but temperature is allowed
to change with altitude. The temperature at the critical point at
radius rc in Figure 1 (where the isothermal sound speed u0
equals the radial escape speed) is set such that numerically
integrating Equations (1)–(4) from the critical point to the
surface will result in a surface temperature equivalent to that in
equilibrium with incoming solar flux taking into account the
evaporative cooling (see Appendix A for details). Once the
critical temperature is known the radial outflow velocity is
readily calculated, and thus the mass loss rate.

2.3. Isothermal Case with Greenhouse Effect Considered

In Case (2.1) we let the isothermal atmospheric temperature
be set by just the incoming stellar flux and thus be equal to the
effective temperature. However, for a thick water vapor
atmosphere the surface will be heated by the greenhouse effect
of the overlying atmosphere. In this case, we still used an
isothermal atmosphere approximation but increased the atmo-
spheric temperature by the total greenhouse warming of the
atmosphere at the surface. The larger isothermal atmospheric
temperature under this regime will increase the hydrodynamic
loss rate compared to Case (2.1).
To account for the atmospheric greenhouse effect, we used a

gray, radiative, plane-parallel approximation where the total
gray atmospheric optical depth in the thermal infrared at the
surface is given by

t
k

= ( )P

gP2
7ref

2

ref

for mass absorption coefficient kref , at pressure Pref and surface
pressure P, where pressure broadening causes the P2

dependency of the optical depth (Catling & Kasting 2017).
Here we used k = -0.05 m kgref

2 1 and =P 10ref
4 Pa (from

Catling & Kasting 2017, Ch. 13). Having t µ P2 in
Equation (7) is appropriate for thick atmospheres, which is
the case when the runway greenhouse limit is approached. For
thin atmospheres, t µ P is appropriate (Catling & Kasting
2017). In this study, the surface pressures are in the low-
pressure regime (less than ∼500 Pa) until the runaway limit is
reached. However, the difference between t µ P2 and t µ P
in Equation (7) is small at such low pressures where the total
greenhouse warming is less than a few K until the runaway
limit is reached. Setting t µ P for such low-pressure moons in
Equation (7) has a negligible impact on the calculated mass loss
rate, so we approximate the optical depth of all atmospheres in
this study with t µ P2. Once the total optical depth of the
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atmosphere is known from Equation (7), the first order global
energy balance is given by (see Appendix B for derivation)

t
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and from Equations (3) and (4) we derived an expression for
r us s (see Appendix A)
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Equations (1), (7)–(9) were solved simultaneously to find T and
us, with rs being given by the ideal gas law. The mass loss rate
is then calculated by

pr=˙ ( )M u r4 10s s s
2

Using Equation (10), the time averaged loss rate is calculated
and surface water lifetime is then obtained via Equation (6).

It is possible that no physically meaningful solution exists to
Equations (1), (7)–(9). When the initial surface temperature,
and therefore surface pressure, is large (above ∼260 K for this
model), the optical depth given by Equation (7) will be
significant. This will cause an increase in surface temperature,
further increasing the surface pressure and thus the optical
depth of the atmosphere. The positive feedback between
temperature, pressure, and optical depth will cause
Equations (1), (7)–(9) to have no valid solution if the initial
surface temperature, set by the incoming stellar flux, is large.
The exomoon–star distance where this positive feedback results
in no solution is the runaway greenhouse limit, and it is akin
the runaway limit found by Ingersoll (1969).

For all three model scenarios, we considered a pure water vapor
atmosphere above a surface water reservoir. We looked at icy
exomoons with masses ranging from 0.005 to 0.04 Earth masses
between 0.9 and 2.0 au from a Sun-like star. This mass range
includes bodies slightly smaller than Europa ( M0.008 Earth), and
slightly larger than Ganymede ( M0.025 Earth). We set the Bond
albedo to 0.2 for each run. We chose a Bond albedo of 0.2 for two
reasons, the first is that it approximately represents the lower
bound for icy moon Bond albedos in the solar system
(Buratti 1991; Howett et al. 2010). In addition, a Bond albedo
of 0.2 approximates the albedo of open ocean with partial cloud
cover (Leconte et al. 2013; Goldblatt 2015). Should an icy moon
form surface oceans, the 0.2 Bond albedo gives us the best
representation when calculating water longevity.

3. Results

For each body in the range of masses and distances
considered, we calculated the time averaged mass loss rate,
M̄ , using a time step of 104 years. With the water content of
each world assumed to be 40% of the bulk mass, the water
lifetime, tWater, was then calculated via Equation (6). The
results of these calculations are shown in Figure 2.

Figure 2 shows contours of tWater as a function of stellar
distance and escape velocity, which is defined as

=
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2
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s
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The runaway greenhouse star–exomoon distance is shown with
red contours on each plot in Figure 2. From Figure 2(A) we can

see that, in the analytic model, water on a Ganymede-like
exomoon (with an escape velocity of ∼2.74 km s−1) would
persist indefinitely at a distance beyond the runaway limit.
However, the ice on a Europa sized moon would only survive
for timescales greater than 1 Gyr beyond ∼1.5 au. Given that
the isothermal and saturated cases represent the upper and
lower bounds on escape rate, the true solution is likely
somewhere between the two plots (Figures 2(A) and (B)).
In Figure 2(C), the impact of the water vapor greenhouse

effect was considered. Under the radiative model, the green-
house effect of a pure water vapor atmosphere contributes a
few kelvin of warming. However, if the body receives
sufficient stellar warming, a runaway occurs. With a pure
water vapor atmosphere, the surface never rises above the
freezing point of water without entering a runaway greenhouse.
But if clouds were to increase the albedo, a world with a liquid
water surface may exist with a marginally stable surface
temperature up to 275 K (Goldblatt et al. 2013). However, such
a world may be transient and easily swing to either a snowball
via the ice–albedo feedback, or a runaway greenhouse state
(Goldblatt et al. 2013).

4. Discussion

The closely packed lifetime lines in Figure 2 result from a
strong dependence on escape velocity and therefore on mass.
From Equations (5) and (6), with all the constants stripped
away, we see that there is an exponential relationship between
ocean lifetime and mass, if the mean density of the moon is
held constant, given by

t µ [ ] ( )
M

M
1

exp . 12Water
2 3

For constant density, r̄, the escape velocity from Equation (11)
is p r= µ( ¯ )v Gr r8 3 s sesc

2 1 2 , so implicit in Equation (12),
µM vesc

3 so t µ - ( )v vexpWater esc
3

esc
2 . This strong exponential

dependence on vesc
2 can be seen in Figure 2 in both the

isothermal and saturated cases. There is a threshold mass region
below which surface water is transient, while moons with
masses above this region will last for billions of years.
Ganymede sized moons will persist indefinitely beyond the
star–exomoon distance of the runaway limit.
If a gas giant planet possessed rapidly evaporating icy

moons, future observations may be able to detect them. The
escaped H from water would form a torus in the orbit of the
moon that may produce detectable scattering in the Lyα.
However, for young, migrating planets this H torus may be
indistinguishable from captured nebular H before it dissipates.
This degeneracy could be addressed by observing aging gas
giant planets that are just entering the habitable zone as the host
star brightens over time. As a Jupiter-like planet enters the
habitable zone around an aging star, hydrogen is unlikely to
escape from the planet. Indeed, if we assume a Jupiter-like
planet at 0.9 au around a Sun-like star has an exobase
temperature of 1500 K then, following Sánchez-Lavega
(2011), the thermal loss of hydrogen via Jeans’ escape from
such a planet will be ~ -10 37 -kg s 1. This is ∼40 orders of
magnitude less than the loss rate from icy moons at the same
orbital distance so any observed H torus may be an indication
of evaporating moons. Icy moons around such a planet are of
particular interest because they may provide habitable surface
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conditions for hundreds of millions to billions of years,
depending on the stellar type (Ramirez & Kaltenegger 2016).
As the host star brightens the smallest icy moons in the
habitable zone would rapidly evaporate, producing the H torus,
while more massive moons could retain their surface water for
billions of years.

A similar torus-producing process occurs for Io, where a
plasma torus around Jupiter contains sulfur and oxygen lost by
the moon that are trapped by Jupiter’s magnetic field lines
(Yoshioka et al. 2011). Also, O atoms may linger around the
icy exomoons, analogous to the O2-rich collisional atmosphere
of Callisto (Cunningham et al. 2015) and could possibly escape
the moon to form a torus similar to the escaped H. A second,

heavier component in the exomoon’s atmosphere, such as
oxygen, would generally act to lower the rate of escape and
water loss. However, a more sophisticated model than
presented here is required to study escape from a multi-
component atmosphere.

5. Conclusion

Planetary migration is likely a common phenomenon
throughout planetary systems (Tsiganis et al. 2005). In
addition, all the large planets in the solar system have a retinue
of icy moons and gas giant exoplanets may have similar icy
moons. Inward migration by a gas giant would subject its icy

Figure 2. For all three plots, the red curve represents the Runaway Flux where the icy moon will be close enough to the star that a runaway greenhouse occurs. The
blue curves represent contours of surface water lifetime (plotted in Gyr). The surface temperatures of the moons are shown by the colored background. In plots A and
B, the surface temperature corresponds to the effective temperature. In plot C, the colored background shows the surface temperature, beyond the runaway limit
distance, accounting for the effect of the water vapor greenhouse. Comparing the surface temperatures in plot C to those in A and B, the water vapor greenhouse is
negligible except very close to the runaway limit distance. The rate of hydrodynamic escape depends on both the mass and radius of the exomoon; as such we plot
escape velocity vs. distance to incorporate both parameters. Plot A shows the isothermal analytic model (Section 2.1) based on Equation (5). Plot B shows the
saturated case where the atmosphere was assumed to follow the Clausius–Clapeyron equation and was saturated from the surface to the critical radius for escape
(Section 2.2). Plot C shows the isothermal model with the greenhouse effect of water vapor considered (Section 2.3). The results shown in all three figures are
dependent on the chosen albedo. If the albedo were to be increased from the chosen value of 0.2, the effect would be a linear decrease in absorbed flux. This would
shift the runaway limit and the contours of ocean lifetime closer to the host star. For a Ganymede sized moon with a Bond albedo of 0.2 (shown here), 0.4, and 0.8 the
runaway limit occurs at 1.05, 0.91, and 0.52 au respectively.
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moons to increased stellar heating. Like a comet entering the
inner solar system, the moons could evaporate and create
atmospheres.

The longevity of such an atmosphere depends strongly on
the distance from the host star, and the mass and radius of the
exomoon. The smaller the star–exomoon distance, the warmer
the icy exomoon will become. As an icy exomoon approaches a
distance of ∼1.1 au around a Sun-like star it will enter a
runaway greenhouse state when the surface melts. However,
this cutoff is dependent on the albedo of the moon, which was
set to 0.2 in this paper. Increasing the albedo will allow stable
surface conditions at closer orbital distances before the
runaway state is achieved. The high temperatures from a
runaway state will drive rapid hydrodynamic escape and erode
the water from the exomoon on very short timescales.

If the exomoon sits beyond this runaway limit the surface
water may persist much longer. Beyond the star–exomoon
distance of the runaway limit, there is an exponential relationship
between mass and water longevity. For an icy moon of
Ganymede’s size around a Sun-like star, surface waters will
likely persist indefinitely. Large moons of this size will maintain
their atmospheres for long periods in the habitable zone and
could potentially maintain a liquid surface for timescales greater
than 1 Gyr. Thus, such moons could be habitable. However, an
icy moon of Europa’s size would evaporate rapidly at ∼1.1 au
around a Sun-like star, and only beyond ∼1.5 au would surface
water (as ice) on a Europa sized moon last for more than 1 Gyr.

O.R.L., D.C.C., and K.J.Z. were supported by NASA
Planetary Atmospheres grant NNX14AJ45G awarded to
DCC. We would like the thank Tyler D. Robinson, for
insightful comments and suggestions on this study.

Appendix A
Derivation of Isothermal and Saturated Hydrodynamic

Escape Models

A.1. Isothermal Model

The three key equations for hydrodynamic escape—
continuity, momentum, and energy—can be written generally
(e.g., multiple species, etc. Koskinen et al. 2013) but we will
use a simplified spherically symmetric model with constant
mean molecular mass (see Chapter 5 in Catling & Kasting 2017
for a more complete discussion of the topic). We assume the
atmospheric density and atmospheric flow velocity only change
in the radial direction. As such, the derivatives for mass
continuity and momentum conservation are complete. Under
these assumptions, the time-dependent and steady-state con-
tinuity and mass conservation equations are as follows.
Continuity is given by:
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where ρ is the mass density, r is the radial distance from the
planet’s center, and u is the atmospheric flow velocity.
Momentum conservation is given by:
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where p is pressure, and g is gravity.

If we assume an isothermal atmosphere, we can relate
pressure and density with the isothermal sound speed
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where k is the Boltzmann constant, T is the isothermal
temperature, and m is the mean molecular mass of the
atmosphere. From the ideal gas law

r= ( )p u . 160
2

Integrating Equation (13) in the steady state, we get the mass
escape rate per steradian of rr u2 , which, when combined with
Equations (13) and (14), gives an expression for the isothermal
planetary wind from a body with mass M:

- = +

- = -

( )

( ) ( )

u u
u

du

dr

u

r
g

u u
u

du

dr

u

r

GM

r

1 2
,

or
1 2

17

2
0
2 0

2

2
0
2 0

2

2

Equation (17) is analogous to Parker’s solar wind equation.
For a strongly bound atmosphere at some critical distance from
the planet’s surface, the right-hand side of Equation (17)
reaches zero, indicating that either the flow reaches the speed of
sound or =( )du dr 0c . The subsonic solution, =( )du dr 0c ,
requires a finite background pressure that inhibits escape, so we
will focus on the transonic solution where =u u2

0
2. The

transonic solution has >du dr 0 at all times and is consistent
with a strongly bound atmosphere at the surface and zero
pressure at infinity.
The critical distance rc occurs in Equation (17) when
=u u2

0
2 which gives us:

= - ( )u

r

GM

r
0

2
. 18

c c

0
2

2

Solving for rc in Equation (18) we find

= ( )r
GM

u2
. 19c

0
2

If we integrate Equation (17) from the surface radius rs to rc
and ignore the u2 term near the surface, where it is negligible
for bodies of interest in this study, we get the equation:

r r= - + -
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )u u

r

r

GM

u r r
exp

1

2

1 1
. 20s s s

c

s c s
0

2

0
2

As the radial distance from the moon increases the mass flux,
ru (in kg -m 2 -s 1), decreases. The steady state continuity given
by Equation (13), when integrated gives p r =r u C4 2 where the
constant of integration C is just the total rate of mass loss (in kg
-s 1) through a spherical surface. As r goes to infinity, ru goes to
0 since r µu r1 2. Therefore, the outflowing wind loses kinetic
energy as  ¥r . Thus, the energy flux required to drive the
escaping mass flux is given by the energy required to remove the
mass flux from the gravity well of the moon, r u GM rs s s.
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A first-order global energy balance between insolation and
cooling via mass loss is then given by:

r s- = + + 
     

⎛
⎝⎜

⎞
⎠⎟( ) ( )A F

GM

r
L u T

1

4
1 21s

s
v s s

absorbed stellar flux mass loss flux

4

radiative cooling

where A is the Bond albedo, Fs is the incident stellar flux, and σ
is the Stefan–Boltzmann constant. The escape flux is given by
r us s and is multiplied by the energy required for that flux to
escape the planet. The energy includes a gravitational potential
energy term, and the latent heat of vaporization Lv (for this
model = ´ -L 2.5 10 J kgv

6 1). In Equation (21) we assume
the atmosphere is transparent to both shortwave and infrared
radiation.

Equations (20) and (21) can be solved simultaneously for the
two unknowns us and T. Once solved, we can calculate the total
escaping mass rate by:

pr=˙ ( )M u r4 22s s s
2

with rs being calculated from r = P us s 0
2 with surface pressure

Ps. We calculate surface pressure with Equation (1) for a C–C
atmosphere given the surface temperature of water, where
reference parameters are at the triple point: =P 611.73 Pa0 ,

=T 273.16 K0 . For our model, we only consider water worlds
with pure H O2 atmospheres, so estimating the surface density
from the saturation vapor pressure is valid (Adams et al. 2008).
We refer to this approach, where Equations (20) and (21) are
solved numerically, as the Numerical Model.

For the slowly evaporating moons of interest in this study,
those with surface water lasting more than 1 Gyr, the escape is
so slow that it does not appreciably cool the moon. Thus, an
analytic model can be derived by neglecting the mass loss flux

cooling term in Equation (21). With the simplified
Equation (21) our isothermal temperature is simply calculated
from incoming stellar flux. And, from our assumption that the
exomoons have an average bulk density of -2 g cm 3, we can
calculate the surface radius pr= ( ( ))r M3 4s exomoon

1 3.
Substituting these two equations into Equation (20) we find that

pr
= -

-⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )u u

r

r

G

u
Mexp

3

2

3

4
. 23s

c

s
0

2

2
0
2

exomoon

2 3

1
3

By plugging Equation (23) into Equation (22), we get the
analytic expression for the mass loss due to hydrodynamic
escape given in Equation (5).
Calculating us in this manner assumes the temperature in our

energy balance equation is a constant and set solely by the
incoming stellar flux and the emitted thermal flux from the
surface. For the low temperature bodies (<273 K) we are
interested in for this study, Equation (23) gives identical results
as the previously defined numerical model until the runaway
limit is approached. See Figure 3 for a comparison.

A.2. Saturated Model

We also modeled hydrodynamic escape from a non-
isothermal atmosphere, the saturated case. To model escape
in the saturated case we start with Equations (13)–(16). Instead
of using Equation (1) to relate temperature and pressure, we
will approximate the Clausius–Clapeyron relation with an
expression similar to Tentens’ formula, given by

= -( ) ( )p p T Texp 24w w

for reference temperature Tw and pressure pw. A reasonable
approximation for < <T250 400 K over water takes =Tw

5200 K and = ´p 1.13 10w
6 bar. A very good approximation

Figure 3. Contours of surface water lifetime comparing the analytic model given by Equation (5), shown in red, and the numerical approach where T and us are solved
for simultaneously, shown in dashed blue contours. Plot A shows the analytic model, which does not consider the greenhouse effect, plotted with the numerical model
taking into account the greenhouse effect of water vapor as derived in Appendix B. Both models produce identical results until the runaway limit is approached and the
numerical model asymptotes along the limit. Plot B shows the analytic and numerical models as well; however, the greenhouse effect is neglected in the numerical
model for this plot. In this case, both methods produce identical results, as expected, for slowly evaporating bodies with surface water lasting more than 1 Gyr.
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for < <T150 273 K over ice takes =T 6140 Kw and
= ´p 3.53 10w

7 bar. From Wexler (1977), whose expression
we have approximated, the simple exponential fit is likely good
to within a few percent for the temperatures in our model.
This simplified expression is desirable because we want to
work with an analytic expression for dT/dr.

We can eliminate p from Equation (14) using Equations (15)
and (16), giving us

r
r

+ + = - ( )u
du

dr

u d

dr

u

T

dT

dr

GM

r
. 250

2
0
2

2

We use Equation (24) to express dT/dr in terms of rd dr

r
r

=
-⎜ ⎟⎛

⎝
⎞
⎠ ( )u d

dr

T T

T

u

T

dT

dr
26w0

2
0
2

and Equation (13) eliminates rd dr in terms of du/dr giving us
our saturated wind equation

-
-

=
-

-
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )u

u

u

T

T T

du

dr

u

r

T

T T

GM

r

2
27w

w

w

w

0
2

0
2

2

or equivalently as an expression for du/dr

= =
- -

- -
( )( ( ))

( ( ))
( )

u

du

dr

N

D

u r T T T GM r

u u T T T

1 2
28w w

w w

0
2 2

2
0
2

where the numerator ( )N r T, is

=
-

-
⎛
⎝⎜

⎞
⎠⎟ ( )N

u

r

T

T T

GM

r

2
29w

w

0
2

2

and the denominator ( )D r T u, , is

= -
-

⎛
⎝⎜

⎞
⎠⎟ ( )D u u

T

T T
. 30w

w

2
0
2

Equation (28) is the form we will use to numerically integrate u
(r). Equation (27) can be written equivalently as

= ( )D
u

du

dr
N

1
. 31

Recall from the isothermal case that, for hydrodynamic
escape from a strongly bound atmosphere, >du dr 0. Near the
surface of the moon the numerator, ( )N r T, , will be negative as
the gravity term will dominate given that our atmosphere is
strongly bound. At some distance rc the u r2 0

2 term will equal
the force of gravity, so =( )N r T, 0 at rc. Since =( )N r T, 0
and >du dr 0, from Equation (31), =( )D r T u, , 0 at rc as
well. At the critical point, =N 0c provides a simple relation
between Tc and rc

=
-( ) ( )r

GMm T T

kT T2
. 32c

w c

c w

Similarly, =D 0c relates uc and Tc by

=
-

=
⎛
⎝⎜

⎞
⎠⎟( ) ( )u u

T

T T

GM

r2
. 33c c

w

w c c

2
0
2

3

The transonic solution is obtained by numerically integrating
Equation (28) from the critical point to the surface. The first
step is to solve for ( )du dr c at the critical point. This is

obtained from Equation (28) by using L’Hopital’s rule.

= = =⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( )
u

du

dr

N

D

dN dr

dD dr

1 0

0
. 34

c c

c

c

c

c

The numerator becomes

= -
-

-
-

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( )

( )
( )

( )

dN

dr
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r

T T

T T

u

r

T T

T T u
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4

2 1
35

c c

c

c
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w c

c

c

w c

w c c c

3
0
2

2

2

3

0
2 2

3

and the denominator becomes

= +
-

+
-

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )

( )

dD

dr

T T

T T
u

du

dr

u

r

T T

T T
2

2
.

36
c

w c

w c
c

c

c

w c

w c
2

2

2 2

If we let º - ( )x u du drc c
1 , simplify Equation (35) to replace

GM rc with Equation (33), and divide out the common factor
uc

2, then Equation (34) can be written as the quadratic equation

+
-

+
-

+
-

- =

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )

T T

T T
x

r

T T

T T
x

r

T T

T T r

2
4

4 2
0. 37

w c

w c c

w c

w c

c

w c

w c c

2
2

2

2 2 2

The positive root of this equation corresponds to the
accelerating flow at the critical point.
To find the mass flux loss, the first step is to guess an initial

temperature at the critical point, Tc. Given Tc, we know uc
2, pc is

given from Equation (24), and rc is given by the ideal gas law.
From Equations (32) and (33), we get rc and uc respectively,
which allows us to solve Equation (37) for the critical slope
( )du dr c. Density can then be found at the new point from
continuity, r r=ur u rc c c

2 2. Given ρ, we can solve for T and p
from Equation (24) with the help of the ideal gas equation. This
integration proceeds to the surface. The guess for Tc is adjusted
numerically until the desired surface temperature (in balance
with incoming stellar flux and mass loss given by
Equation (21)) is achieved. Once the correct values are found,
Equation (22) will give the mass loss rate.
For both isothermal and non-isothermal models, the surface

temperature is assumed to be set by the incident solar flux
averaged over time and hemisphere, which is given by
Equation (2) for a rapidly rotating body. The isothermal case
represents the warmest possible atmosphere neglecting green-
house effects under the case of hydrodynamic escape. The non-
isothermal case represents a minimum possible temperature for
a water vapor atmosphere at rc since it is saturated at all points
based on the surface temperature set from the solar flux. These
two models represent the extremes of atmospheric temperature
profiles for a water vapor atmosphere, with the real solution
likely somewhere between them.

Appendix B
Derivation of Surface Temperature Accounting for

Greenhouse Effect and Hydrodynamic Escape

We would like to calculate the total surface warming due to
the greenhouse effect of a water vapor atmosphere considering
the energy absorbed to drive atmospheric expansion and escape
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throughout the atmosphere. We start with the greenhouse effect
of a hydrostatic atmosphere, then adapt the equation for a
hydrodynamic atmosphere. We assume the atmosphere is
transparent to shortwave radiation. From Catling & Kasting
(2017), for a moon with a gray, radiative, hydrostatic
atmosphere, the energy balance at the surface is given by

s t= +( ) ( )T F 1 2 38s
4

net

where τ is the total thermal infrared optical depth of the
atmosphere at the surface, σ is the Stefan–Boltzmann constant,
and Ts is the surface temperature. The time-averaged,
hemispherically-averaged flux incident on the moon is given
by = -( )F A F1 4snet for Bond albedo A, and incident stellar
flux Fs.

In our model, we are concerned with moons in the
hydrodynamic regime where water vapor is lifted from the
surface of the moon and accelerates upward until it escapes to
space. The total energy required to remove a mass flux of water
vapor from the moon’s surface is given by

r ( )GM

r
u 39

s
s s

for surface radius rs. In Equation (39) M is the mass of the
moon, G is the gravitational constant, us is the radial outflow
velocity of the atmosphere at the surface, and rs is the
atmospheric density at the surface, such that r us s is the mass
flux [kg -m 2 -s 1].

In the hydrodynamic atmospheres of interest in this study,
the energy flux needed to remove the atmosphere, given by
Equation (39), must come from the stellar radiation and the
thermal IR flux. That is, it must come from the t+( )F 1 2net
energy input term in Equation (38). As such, the energy
balance at the surface will then be given by

s t r= + -( ) ( )T F
GM

r
u1 2 40s

s
s s

4
net

in the hydrodynamic regime. We also account for the energy
required to vaporize the water mass flux at the surface, given by

rL uv s s for latent heat of vaporization Lv. Subtracting rL uv s s

from the right-hand side of Equation (40) and reorganizing the
terms, we find the following energy balance of input and

output:

t
r s- + = + +⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )A F

GM

r
L u T

1

4
1 1

2
. 41s

s
v s s s

4

Equation (41) is the global energy balance at the surface for an
icy moon with the greenhouse effect considered under the
hydrodynamic regime. It can be compared with Equation (2) in
the main text where we assumed an atmosphere that was
optically thin in the thermal infrared.
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