Planetary Geodyr

planetary bodies dynamically respond to applied stresses.
Heat transfer out of the interior commonly leads to
stresses that affect the surface. For quantitative analysis
of geodynamics, numerical techniques are generally
required and are applied looking at the material as a
continuum. Rocks and ice in planetary bodies ultimately
want to be in equilibrium with applied stresses. Equilib-
rium can be assessed by computing whether the stress
gradients balance the applied force. The material
response to stress is strain, which can be calculated from
displacement gradients throughout the material. Stress
and strain in a solid are related through intrinsic material
properties (e.g., Young’s modulus and Poisson’s ratio).
The material properties of rock and ice are similar
enough that the icy lithospheres of the moons of the
outer planets undergo the same basic processes as the
rocky lithospheres of the terrestrial planets. Large litho-
spheric blocks are supported isostatically, floating in the
asthenosphere. Topography can also be supported by the
strength of the lithosphere, in which case some amount of
flexure occurs as a result of the load on the surface. The
distribution of mass in the subsurface can be inferred
from measurements of the gravity field. From such meas-
Urements, it is possible to discern if a feature such as a
mountain or volcano has a large root, or if a large mass
lies beneath a surface with no topography (e:g- lunar
Mascons). Surface temperature is controlled for most
Planetary surfaces by solar heating, the effect of which
Senerally only penetrates a few meters into the surf:ace-
Heat flows through the brittle lithosphere by conduction,
v:t Fhe deeper asthenosphere transfers heat thr.ough C(:;:
oc‘txon.. The asthenosphere behaves like a fluid on tg -
inglc timescales, and its response to stress mus ;
rvestlgated in terms of fluid mechanics. The €xa
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8.1 Motions in Planetary Interiors

Planetary surfaces are, in many ways, shaped by proper-
ties of their interiors and motions below their surfaces.
Those properties and motions are strongly controlled and
driven by planetary heating and heat trying to get out of
the interior. Chapter 6 introduced planetary heating, and
Chapter 7 introduced planetary interiors. We now want
to take a look at techniques that are used to understand
the dynamics below the surfaces of planets and the effects
on the surfaces that spacecraft, and maybe eventually
astronaut geologists, study.

Earth’s surface, for example, is very geologically active,
and most of that activity is explained in the framework of
plate tectonics. Earth’s surface plates move relative to
each other (at rates of about 5 to 10 cm/yr, in general),
and those motions induce a lot of stress in the litho-
sphere. If we look more deeply, we see that plate motions
are driven by convection working to transfer heat from
Earth’s deep interior to its surface, to ultimately be radi-
ated to space. Examining the rest of the Solar System,
though, we do not see any clear evidence of global plate
tectonics taking place on any other body. Does that mean
that their interiors are cold and inactive? Certainly not.

Dramatic examples such as the pervasive volcanism on
Io and the active geysers erupting from the south pole of
Enceladus tell us that even small moons can have
dynamic interiors. Geologic features such as large rift
systems, mountains, and volcanoes on Venus, global
thrust faults on Mercury, giant volcanoes and rifts on
Mars, relaxed topography and fault systems on icy satel-
lites, and apparently active convection in surface nitrogen
ice on Pluto make it clear that intense forces are or have
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Section 9.2 discusses these behaviors in the context of
observed structures and tectonics. Elasto-statics/ -dynamics
consists of three components (or sets of equations): (1)
stress equilibrium (ie., force balance or momentum con-
servation), (2) definition of strain in terms of continuum
deformations, and (3) constitutive equations that relate
stress and strain in a solid. To solve these sets of equations
quantitatively, particularly numerically (the common
approach of modern geophysics/geodynamics), geodyna-  8.2.2 What Exactly Is Strain?

micists work in the domain of continuum mechanics. When a stress is applied to an object or mass of materia)

E the material will deform. This deformation is called strain

where f,. f,» and f, are the external applied forces per unit
volume in each dimension. In the common static cas
within a planetary surface, the primary external force is
gravity. Box 8.1 includes an illustration of how to use the
stress equilibrium equations to solve for a continuous
expression for stress.

\ 8.2.1 Balancing Act: Stress Equilibrium (¢). Like stress, strain has normal and shear components
Stress (o) is defined as a force divided by the area over In macroscopic terms, normal strain is generally defined as
ents on an infinitesimally small volume inside some solid 8Pl length in that dimension, and shear strain & the

(e.g., a planetary lithosphere). Normal stresses are those change in angles between faces of the body
that act perpendicular to one of the surfaces of the :

volume (i.e., along the surface normal vector), and shear
stresses are those that act parallel to the surface. The force
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Figure 8.2 Illustration of displacement vectors within a strained
volume. Dark blue (solid outline) represents the original shape.
In order to deform to the light blue shape (dashed outline),
points within the volume must move. Displacement gradients are
found by computing differences between the displacement
vectors of points within the volume.
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Similar to the case with stresses, the complementary shear

strains are equal to each other (i.e., £y = &% &x:= &z and
E‘." = 8}‘:) .

8.23 Relating Stress and Strain
Now that we can relate deformation (displacements) to
strains and compute stresses from applied forces, we need
10 be able to relate stress and strain to each other. Solid
geologic materials near the surfaces of the Earth and
e lanetary bodies generally respond elastically to
Pplied stresses (so long as the stresses are not too large:).
e ice) will deform when stress is applied, but will
e original shape when the stress is remov.ed.
ermore, the response is generally linear = doubling
stress will double the strain. This behavior is sketched

y in Figure 8.3. :
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Figure 8.3 Schematic illustration of the relationship between
stress and strain in most solid geologic materials. For small stress
and strain, the relationship is linear and elastic. Eventually, the
amount of strain is such that it cannot be recovered (plastic) and
the relationship becomes nonlinear. If the stress overcomes the
strength of the material plus confining pressure, fracturing occurs
(brittle). Otherwise, the material will flow to accommodate
applied stress (ductile).

Figure 8.4 Deformation (extension or compression) in one
dimension causes deformation in the orthogonal dimensions.
This effect is parameterized by Poisson’s ratio.

per area, or pressure). E for rocks is typically ~40-80 GPa
and for ice is ~6-12 GPa.

In real materials, normal strain in one dimension leads
to a normal strain in the orthogonal dimensions. This
behavior is illustrated in Figure 8.2, where the original
square compresses in the vertical direction and extends in
the horizontal, and in Figure 8.4, where the cube extends
in the x-direction and correspondingly compresses in the
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Shear stresses lead to shear strains in the same directions,
but not in orthogonal directions. The proportionality
constant between shear stress and shear strain is called
the shear modulus or modulus of rigidity (Gy), such that,
for instance, Oy, = 2GExy- Gs Can be rewritten in terms of

G.=E/(1- V). Therefore, the constitutiye ,
 and V: Zhu. stresses and strains can be written 5 ey
9 ear . -Lodats 4;
tions for s
IRETE
gy = TR
“y E
LY
= L/’(}x/ (}')'3
'XZ [
14V
Oy
G AR

These three fundam'
rium equations, stral
tive equations)
investigating th

8.3 The Weight of the World: Isostasy
and Flexure
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An excess (or deficit of ) mass in or on the lithosphere of
a planetary body induces stress. The stress can be accom-
modated isostatically (by buoyancy in the asthenosphere)
or flexurally (by the strength of the lithosphere). We wil
see that these two possibilities are actually end members

of a continuum geophysical description.

ﬁBOX 8.1 COMPRESSION OF ICE SPIRES ON CALLISTO

To illustrate a fairly straightforward application of
the relations presented in this section, let’s look at
vertical erosional structures such as might occur
from various processes throughout the Solar
System. Figure 8.5 shows spires of ice on Callisto,
one of Jupiter’s large moons, resulting from long-
term erosion of the surface. An idealized sketch
for this problem is also shown.

We want to know how self-compression
affects the dimensions of these features. If there
is a significant effect on the dimensions, we
would want to take the elastic response into
account when studying further erosion. The two
questions to answer are:

1. How much does the spire compress under its
own weight?

2. How much extension (“bulging”) occurs at
the base from the weight?

The known dimensions and physical properti
for this problem are: p=992 kg/m* E=9 G};a &
v=0.33, h=500m, L=100m, and g1 24 /o2

Looking at the problem as a whole reveals g :

The applied stress in the verti, B
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Figure 8.
gure 8.5 Image from NASA’s Galileo mission shows Spifes of

ice on Callj '
i alhs.to. Inset shows an idealized sketch of an ice SPI®
Wing variables used in Box §.]

Olution: The weight of the column will
overall dimensjon changes from strains:
and there are no applied stresses in




/' 3 S The W"“"" of the World: |‘.lp'.l,\',y and Flexure 133

0z

(¥.6)
solving for 0z by integration gives

(7::(':) = J",Dg dz = pg(h i Z)
h
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The strain definition equations provide the means to convert these strains into changes in height
(h) and width (L):

0 0 0
1
= J di — Jazzdz = Jﬁpg(h — 2)dz (8.9)
Ah h h
which gives
Sl
Ah = 2Epgh (8.10)

For the properties and dimensions given for this problem, the total compression due to the weight of overlying
ice is 1.7 cm.
Since z=0 at the base of the spire, the change in width at the base is given by

AL L/2 L/2
AL = Jdux: j & doe— J —;:;pgh dx (8.11)
0 —L/2 L/2

which gives

Al _%pghL (8.12)

For this problem, the “bulging” of the base amounts to 1.1 mm change (extension) in width. Similar geologic
features, called bl,lttes occur in desert regions on Earth. For a typical butte with #=300m and L=75m
(and ,E d a0y te for sandstone), Ah and AL are 2.4 cm and 1 mm, respectively, comparable to the
e D he scale of the features, it would be safe to ignore the changing

values for ice spires on Callisto. Given t
kdiiensions when studying further erosion. %
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¢ word isostasy comes from the Greek “iso” or eque = =0

and “stagis? or standing still, and it is a statement of

1o¥ant equilibrium of lithospheric blocks. The basis of

BSostagy i the concept that any sufficiently lange volun}:e

San‘;“gh the outer parts of a planetary body will 1;:“’:8;1:

an € gravitational force as any other colum? of the 2

q:;a'nd depth, ‘This concept can be expressed ma
Wl lanar geometry, as

where py; is the density of each layer of the first column,
hy, is the thickness of each layer in this column, and p,;
and hy; are the densities and thicknesses of the layers
in the second column. The summation extends to a
sufficient depth - known as the compensation depth
(Do) - that the interior can be considered laterally
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Figure 8.6 The Pratt and Airy models of isostatic balance on a
planetary body.

homogeneous. An assumption inherent in isostatic com-
pensation is that the columns can be considered to be
independent of each other - i.e., the crust is strengthless
at the horizontal scale of the columns considered.

The equality can be achieved by lateral variations in
crustal thickness, density, or both. The case of topo-
graphic load on a constant-density crust being compen-
sated by a thickening of the crust (ie, a “root” extending
into the mantle) is the Airy model. The case of compen-

sation of a topographic load by lateral density varjationg
is the Pratt model (Figure 8.6).

8.3.2 Flexure
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. 8.7 Schematic illustration of the flexure of an elastic plate
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Balancing forces and torques e the p.rmaples. of
Section 8.2 leads to a fourth-order differential equation
that guides flexural response:

4 2

D%+P%+gw(pm — Prn) = 4(x) (8.14)
This equation describes the vertical djsplacement,.w, of the
elastic lithosphere as a function of horizontal position, x. 4
(x) represents the applied load, which can be a function of
and P is any applied horizontal force. The third term on ﬂlle
left side represents the restoring force exerted by th? ﬂmd.
asthenosphere against the flexure: g is the accelerahf)n of
gravity, p. is the density of mantle rock, and pg i the'
density of any material that is filling in the basin created by
downward flexure of the plate (e.g., water in the ocean Of
sediments in a sedimentary basin). The mechanical }.)r.OP'erw'
ties of the plate are encapsulated in D, the flexural rigidity:

ER?
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=)

(8.15)
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Figure 8.8 Topographic profile perpendicular to a double ridge on Europa (solid red line) along with the modeled flexural plate profile
(dashed blue line). The inset image shows the location of the profile. Hurford et al. (2005) used the distance between the center
of the load and the crest of the flexural forebulge to estimate the thickness of the elastic plate. Modified from Hurford et al. (2005).
of a plate under a point or line load for the cases of an  Venus, to volcanic constructs on Mars, and to various
intact (a) or broken (b) plate. The solution of Equation  ridges on icy moons and the dwarf planet Pluto in the

8.14 for an intact plate is

W= qoa3 -y X X
= Ee a <cos —+ sin ——) (8.16)
o a

where g is the load, and a is the flexural parameter:
fk [4D/(p,, - pan)g]*. The solution for a broken plate
S of a similar form:

W:qoa3 —~
s Chiaic o gt

- . (8.17)

Thfse solutions reveal that the elastic plate will respond in a
185 of periodic highs and lows, with an amplitude that
ey exponentially with distance from the load. The
Hlance to the frgy (largest) flexural high for an iy

cen Orizontal distance from a surface load to the adja-

f inferring subsurface
s the Solar System, from
to scarps on Mercury and

outer Solar System (e.g., Barnett et al., 2002; Watters,
2003; Hammond et al, 2013; Huppert et al, 2015).
Figure 8.8 shows results of such an analysis by Hurford
et al. (2005) of double ridges on Europa. They found that
Europa’s elastic lithosphere at the time the ridges were
emplaced was only a few hundred meters, compared to
the tens of kilometers common for terrestrial planets.

In our second case, we'll consider periodic loading of a
planetary surface, where the emplaced load is given by g-
() = pgh, sin(2mx/A). The topographic load is assumed to
have the same density as the crustal plate, p, a topographic
amplitude h,, and wavelength 1. The flexural response of the
underlying plate is constrained to have the same periodic
response as the topography and can be expressed as

Plate ; : 2
Cane. % =70 and for a broken plate is x;, = 370/4. We e soin S S h, y
: lI’Lnfer the thickness of the elastic plate by measuring A (P = Bc) 1 (a 2_zr> i
A\ &a7

(8.18)

The most instructive aspect of this solution is to
consider the extremes of very short wavelength
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o y values of the

length scale (4) of the topographic load for different .
elastic thickness of the lithospheric plate (h,). Small values of C
indicate that the weight of the topography is supported by tl?e
strength of the lithospheric plate. For C~ 1, the topography is

compensated isostatically.

topography and very long wavelength topography. For
very short wavelength topography (i.e., for 1 < a) the
amplitude of plate deflection, w,, is negligible. In other
words, the rigidity of the plate can support loads that
have a wavelength much smaller than the flexural
parameter. For very long wavelength topography (i.e.,
A>a), the solution simplifies to w,=ph,/(pm-po),
which is the isostatic result! Figure 8.9 shows a plot
of w, divided by the isostatic result as a function of
wavelength of the periodic load for different values of
the elastic thickness (h in Equation 8.15) for a rocky
body. Where this degree of compensation approaches
1, the load is supported isostatically, and where it is
small, the topography is supported by the rigidity of
the plate.

It is common for planetary bodies to exhibit cases
f)f both end ‘members of topographic support. For
instance, gravity data (see Section 8.4) of Mars indi-
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8.4.1 The Geoid
The geoid of a planetary body is defined as a surface over
which the gravitational acceleration (or gravitational
potential) is constant. Since all planetary bodies rotate,
the centripetal acceleration from rotation is included
in the geoid. On Earth, if the oceans were influenced
only by gravity and rotation, they would take the shape
of the geoid. The geoid of the Earth is illustrated in
Figure 8.10.

The concept of the geoid arises from Newton’s law of
gravity. The gravitational acceleration felt at any point
external to a planetary body can be computed by:

B EI0 D)= J—G/Z2 dm (819

where (r, 6, ¢) are the body-centered coordinates of ¢

external point, G is the universal gravitation constant, b8
tﬁe vector between the infinitesimal mass unit (dm) &
the external point, and the integral is throughout the

body. For a perfect sphere, the solution of this Inte8"
has the relatively simple form

8n(r,0,6) = —Gpg/s2 (820
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U=-G]\/},/,._N fcfgm dr, which, for a sphere besd
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Potential can quickly become very comP o
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Geoid height (m)

Figure 8.10 Geoid of the Earth. The deviations from a reference ellipsoid are quite small compared to the Earth’s radius. Modified from

delai.gsfc.nasa.gov.

To capture this complexity, gravitational potential is
Often expressed in terms of spherical harmonics:

_ GM GM©— n
ea— e E <§> J,P°(sin6)
it r r
® 5 =il

*Z Z <§> WPT( sin 6) (Cy, ym cOS M@ + Sp,m SN me)

h=] m=1
(8.21)

In tl'llS ex
N0miq]g
deScrib

Pression, P (sin @) represents Legendre poly-
»and J,, C,. and S,, are coefficients that
¢ the Stremgth’of the field at each value of n and
r‘eme‘;tg el isge compute these coefficients from me"r‘lsci
as ; .of the gravity field for as many values (,)f n :21
ist eios%.l ¢. Notice that the first term in Equation ol

Seco Pherical solution (corresponding to 7 =1m= 0).
term describes zonal harmonics — the case when

m=0 (note that J,=C, ). The zonal harmonics repre-
sent latitudinal gravity inhomogeneities. For example, J,
describes the amount of rotational flattening (i.e., equa-
torial bulge) a body experiences from rotation. In the
third term, the coefficients with n= m are called sectorial
harmonics, and these represent longitudinally symmetric
inhomogeneities in the gravity field.

Higher degree and order (n and m) describe gravity
signatures of ever decreasing size. In order to detect
small-scale signatures, many gravity terms are required.
The EGM 2008 global gravity solution for the Earth goes
to degree 2190 and order 2159, representing spatial scales
of ~2km). Thanks to NASA’s GRAIL mission, the gravity
field of the Moon is known to degree and order 900
(Lemoine et al., 2014). The higher degree and order terms
fall off more quickly with distance from the body, making
it very difficult to measure details of the gravity field from

large distances.
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8.4.2 Gravity Anomalies :
Differences between a reference geoid 4 e
gravity field are called gravity anomah.cs. s o
geoid for the Earth (World Geod‘etlc ys e
WGS84) is an ellipsoid of revolution w‘xth p : : il
defined coefficients. Anomalies in the gravity -ﬁe]f ar;ss
from topography and from an excess or deficit ot 1 )
below the surface (i.e., lateral density inhomogeneltlecsl

(Figure 8.11). Gravity measurements on Earth have t'rg =
itionally been made using 2 gravimeter (a very Seﬁsmve
accelerometer). In modern times, tracking satelhtef as
they move through Earth’s gravity field has prov1(.led
more consistent, detailed datasets. Similarly, tracking
spacecraft as they perform flybys or orbit other planetary
bodies provides gravity measurements across the Solar
System. The GRAIL mission precisely monitored the
distance between two spacecraft (Ebb and Flow) to make
detailed measurements of the Moon’s gravity field (Zuber
et al., 2013).

Gravity data are often reported after one or both of
two important corrections are made. The free air cor-
rection adjusts the data for the elevation or altitude of
the measurement above the reference geoid, assuming
there is no mass (i.e., just free air) between the instru-
ment and the reference geoid. In other words, any mass

nd the measured
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8.4.3 Assessing the Compensation State
If the topography is compensated (e.g., by a root iy i
Airy model), no anomaly will show up in the free
correction. If the topography is not compensated (eg, it
it is supported by the strength of the lithosphere) ,
positive gravity anomaly will show up. Isostatically cop.
pensated clevated terrain will show up as a gravity loy
after the Bouguer correction, since the root has a lower
density than the surrounding mantle, whereas flexurally
supported terrain will not show a Bouguer anomaly
(Figure 8.11).

In Section 8.3, we computed the flexural response of an
elastic plate to periodic topography of the form q(x)=
pegh, sin(27i/}), and we noted that short wavelength (ie,

Figure 8.11 Tllustration of gravity profiles after free air (blue) and Bouguer (

no topography or lateral density variations, b i

: , both gravity profil
neg?t.lve Bouguer anomaly. (c) Topography that is ng fom S
positive free air anomaly, but no Bouguer anomaly. (

Free-Air
Gravity
=

Figure 8.12 Gravity
from NASA images.

red) corrections. In all frames p, < p, < ps. (a) If thereart
pensated topography has no free air anomaly, but hasa

pensated (i.e., i
1) S(; Z ; 18 supported by the strength of the lithosphere) shows @
cess has a positive anomaly with both corrections.
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Figure 8.13 Admittance measurements (data points) for regions
on the Earth (Hawaii) and Venus (Ulfrun) indicate similar
elastic lithosphere thickness on the two bodies. The solid lines are
model fits to the data. Modified from Nimmo and McKenzie
(1998).

small-scale) topography can be supported by the strength
of the plate and long wavelength topography is isostati-
ally compensated. It turns out that the gravity anomaly
Produced from that topography and the resulting litho-
Spheric deflection is

by G e 22
1 'i'l azl 4
4N

Equation 8.22 has two important attributes to note.
The ﬁIst is that, e : P 2 hy is lelded out, the
: ‘as the degree 'Of

9. The ratio of gravity
Figure 8.13 shows
e Earth, illustrating
ats of gravity and
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8.5 Conductive Heat Flow

As we learned in Chapter 6, the transfer of heat is an

Important driver of many geologic processes throughout
the Solar system, Of the three methods of transferring
heat (conduc tion, convection, radiation), conduction |

by far the most important in the solid outer layers of
planetary bodies with which we interact, The crustal layer
of a body is heated and cooled from the top by radiation
and may have heat delivered to the bottom through
convection, but the thermal energy makes its way
through the crust by conduction, The efficiency of con

ductive versus convective heat transport therefore con

trols the interior temperature, We can exploit our
knowledge of heat conduction to remotely infer surface
properties from remote thermal infrared observations,
Fracturing of surface rocks from stresses imposed by
cyclical heating and cooling has recently been recognized
as a potentially important mechanism for breaking down
rocks and building regolith on many planetary surfaces.

8.5.1 Fourier's Law and Heat Diffusion

Jean-Baptiste Joseph Fourier, like other famous early
scientists, was interested in a wide variety of topics, both
natural and philosophical. Fourier made significant
advances in understanding heat flow by combining
experimentation, mathematical advances, and by break-
ing his thought from the paradigm of action-at-a-dis-
tance, which had been prevalent at the time, reinforced
by Newton’s brilliant development of the law of gravity.
Fourier noted that the flux of heat (energy per time per
area flowing through a surface) is directly proportional to

the temperature difference immediately on either side of

the surface. From this observation, he developed the
partial differential equation governing heat flow that
now bears the name Fourier’s Law:

orT
= 2
doi kaz (8.23)
or, in three-dimensional vector notation,
PV T (8.24)

In these equations, ¢ is the heat flux (ST units of W/m?), 7'
is temperature, and k is the thermal conductivity (units of
wW/m/K). The thermal conductivity describes the amount
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iven distance for a

of energy that can be transported a & _4W/m/K for

given AT. It is typically in the range of 1
rocks and ice and 10-80 W/m/K for metals. .

A mass of material can store heat as well as conduct it.
Conservation of internal energy including both heat stor-
age and conduction adds a time component and leads to

the law of heat diffusion:

or__k&r (8.25)
EEmN o, 072

or in three-dimensional vector notation

M LVZT (8.26)
ot P

Here, p is density and ¢; is the specific heat capacity which
describes the amount of energy required to change the tem-
perature of 1kg of material by 1K (units of J/kg/K), and k is
assumed to be constant. If there are other energy sources ot
sinks (e.g., radiogenic heat production), they can be included
as additional terms to this equation. The quantity klpcy is
known as the thermal diffusivity («; units of m?/s).

g.5.2 Surface Heat Flux and Temperature Profile
We can measure the heat flux a‘E the surface of the o
in detail (Figure g.14). Earth’s a.veragt heat g
il m?2, with 4 from the continents (~65 mW/mz\?
a bit lower than ¢ frorr'l the oceanic lithosphe
(~100 oW /m?). It is interesting to n;)te th;_;it the hegt ﬂue
from the Sun at 1 AU is 1367 W/m" — a factor of morx
than 10* larger than Earth’s internal heat flux, Temper:
ture balance at the surface is therefore dominateq b.
solar insolation, but, as we'll see below (and as we kno‘zl,
from human experience), the solar contribution doeg b
penetrate deeply into the crust. In a planetary context, the
Jominance of solar insolation to surface temperatyy,
 lesNithdifficult (toRrEastre internal heat flux frop
remote thermal infrared observations. Dramatic excep.
tions to this are ]upiter’s volcanic moon Io, which, due t,
tidal heating, has q ~4W/m” (nearly 10 percent of sola
insolation) and Saturn’s tiny moon Enceladus with ,
q~250 mW/m? (about 2 percent of insolation at its dis-
tance from the Sun) in its South Polar Terrain from
which geysers are erupting (see Figure 10.8a).

has been constructed by incorporat

ti le geologlcal and geoph SlCal roxies Of hEat flO W

OW measur
eme . ;
nts are fairly sparse over much of Earth, and the map

Modified from Goutorbe et al (2011)
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ntegrating E‘l““ti.on 8'2? (or .8-24), assu
heat flux, predicts a linear increase iy
gant o surface of the Earth, with a temperat
) of ~20-35°/km. Temperature m
& jeep caves ar{d borehole§ confirm this ap
:-losf to the surt.ace. In feahty, however, decay of radjo.
qdi\'n‘ elements 1n Ea@ BSTUST At heat input from the
;nantk‘ (]mmjer accretional energy) also affect the heg;
Jow in the lithosphere, and the linear approxim
preaks down at depths greater than a few kilometers.

Many small bodies of the Solar System (e.g., asteroids
omets, small moons) never differentiated ang can be
expected 0 have already lost all of their accretional ey, o
The only source of internal heat for these bodies wo
nadiogenic heating in their rocky components. Assuming
steady state (dT/dt=0) and integrating Equation 8.24 in
gpherical coordinates with a radiogenic term (oH, where i
is the radiogenic heat production in W/kg) predicts an
interior temperature profile T = T,,p‘si,f(R2 —12?) and a
surface heat flux of g,=pHR/3. In these equations, T, is
the surface temperature, R is the radius of the body, and r
is the distance from the center at which the temperature is
being computed. Assuming radiogenic heat production is
the same as measured for chondritic meteorites, the pre-
dicted heat flow at the surface of a body the size of the large
asteroid Vesta (R ~262km) is ~1 mW/m?. For the small
near-Earth asteroid Bennu (R~250m), the target of
NASA’s OSIRIS-REx sample return mission, the predicted
surface heat flow is only ~1 WW/m?. These very small heat
fluxes would be nearly impossible to distinguish from solar
heating in remote observations.
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ure gradient
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85.3 Solar Heating

As mentioned above, the thermal energy balance near the
surface of planetary bodies is dominated by solar insola-
tion. Since planetary bodies rotate, the solar energy input
would be (loosely) approximated as a time-varying peri-
odic surface temperature: T, = ATcos(wt), where AT is the
“Mplitude of the temperature variation and o is the rate
0f Variation (i.e., rotation rate). This assumption is over-
“Mplified, but has the virtue of being analytically solv-
able, Integratmg Equation 8.25 with this surface
emperatyre boundary condition gives for the tempera-
e as a function of depth and time:

- wpc
TG, =T, + ATV E? cos (wt — @O

Th‘s Solution illustrates two important aspects of S"tli‘;
tem : 1
fallsen peramxc variations: the temperature varia

R €Xponentially wit h depth, and there is 2 time

(8.27)
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(phase del: :
) lay between the surface and subsurface tem

Perature cycleg T .
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1s called the thermal skin depth, and is given by
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Y 7t
['h liurnal t i
H€ diurnal thermal skin depth for Earth is betwees
0out 5 and - { i
y} and 20cm, depending on the soil prope:
he annual thermaal L i
: .wau|h~ulml5Ln|dvaL(hu~h)nhun“uU:m:w‘
for | 118 about 1-4 m,
s ‘.: t~ ; & . .
1 Teality, solar heating is not perfectly sinusoid
| ‘ : ’ ; y
ner NJVA”Q;%Nmi|HPHQ(“H1HHIthl|HHF,hlth‘
the effective uikw¢lunuuhwy(xnuhnunlhtnlIWJi%~
not temperature, Flux (energy) balance at the surface ca
be expressed as
Sioa oT
5 (I8—"Ag)icosd — k— copT =0 8.29)
2 " : B,
v 0z

surf

where S, is the solar flux at 1 AU (1367 W/m?), rau is the
heliocentric distance in AU, Ay is the Bond albedo, @, is
the solar incidence angle of the surface facet considered, ¢
is the bolometric emissivity, and 7, is the surface tem
perature. If the specific situation includes other heat
sources or sinks (e.g., heating from the atmosphere, vola
tile sublimation), extra terms can be added. With this
boundary condition, Equation 8.25 is no longer solvable
analytically - numerical techniques are necessary.
Figure 8.15 illustrates temperature versus depths curves

for a model surface. Note the decrease in amplitude of

temperature variations and phase offset of the tempera
ture wave with depth.

Another parameter that arises from considerations of

heat conduction is thermal inertia:

-

ere I' describes a material’s resistance to changes in
W L%

(8.30)

temperature and has the somewhat cumbersome units of

]/mZ/K/sm. Thermal inertia is often used as a proxy for
grain size, as described in Section 2.5.4. Small grains (e.g.,
sand and dust) have low thermal inertias - they heat up and
cool down quickly (e.g., the Moon has I'~50 in these units).
Large grains and bedrock, on the other hand, take a longer
time to heat up and cool down. Observations of tempera-
ture as a function of time of day can be used to determine
thermal inertia. Figure 8.16a shows diurnal temperature
curves for surfaces with different thermal inertias.
Figure 8.16b plots thermal inertias of asteroids versus their
diameters, indicating that large asteroids are covered in
fine-grained regolith material, whereas the surfaces of small
asteroids appear to be, on average, blockier,
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Figure 8.16 (a) Surface diurnal temperature curves for bodies of
different surface types, and therefore thermal inertias. These
profiles are computed with a thermophysical model that uses the
surface energy balance given in Equation 8.29. Measuring

i Figure 8.15 Example temperature profiles from Equation 8.27

for a planetary body at 1 AU with a rotation period of 24 h and

l thermal diffusivity of 10°m/s. (a) Temperature variation with
depth at different times of day. The horizontal dotted lines mark

] 2 ; ; temperatures of a surface at different times of day is a powerful
:xtr;:czlsl?hfestxr]ndefatﬁliotjri: ;STL)‘:; ‘i;};t%tnbt‘e}m\b[hem means of determining the thermal inertia of a surface. (b)
amplin;de okt mp;rature R 5 d.m;uud};:\ md bat Thermal inertias of asteroids as a function of diameter. The

C shes, ¢ - 3
five skin depths almost no temperanfre H appar‘:zt 1}he letters in the key are different asteroid spectral types (which
plot also illustrates that the temperature gradient, which is srltfpond to different inferred compositions). Modified from
proportional to heat flux (Equation 8.23), changes over the elbo et al, (2015).

course of the day, so that heat is conducted into the surface in the
iiaytlme xd e (;f the Surfa;ei at nt}i;!!:t time. (b) The sinusoidal ~ thermal stresses have long been recognized as a mechanism
emperature variation assumed in this simple model at the fo i ; irless
surface and at one and two skin depths below the surface. The P alhng of materija] off of rocks at the surface. Airles

iminishing amplitude of the temperature variation is again PlaneFary bodies (e.g, Mercury, asteroids, comets) &
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~4h at 1d; and ~8h at 2d_. ey o % - .
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i R form reagsoelfihsmpass in'lPaCtS as a primary mechanist
; k S ,
Heating and cooling of geologic materials leads B n these surfaces (Delbé et al., 2014)-
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e coverad in detail in Ch;\pfem 13 and 14, In thg
Aapey, we focus on ll\w flow of mantle rocks,

\ fluid can be defined as a material thay deforms
antnwously under an applied stress. We discussed in
wtion 8.2 the response of an elastic solid to an applied
s - it will deform (i, rearrange its structure af the
sicascopic level) until it balances the applied stress. For
wnall stresses in most geologic solids, the elastic response
a linear (e Bo). Fluids, however, are never able to bal.
ane the stross = their molecules keep slipping past one
another. In this case, the applied stress leads to a continuous
ak of deformation, or a strain rate (& =de/ds the dot
adiates ditferentiation with respect to time). For many
aologic fuidy, the relationship between o and ¢ is linear:
swch materials are called Newtonian fluids:

&= (8.31)

The proportionality constant between stress and strain
S the dynamic viscosity (u), which has units of Pa:s.
Dynamic Viscosity describes the stress required to cause a
Sven st rate in a fluid, Dividing « by the density of the
R gives 2 quantity called the kinematic viscosity (v),
M4ch has units of m/s. Recall that these are the same
Wnits as thermal diftusivity, and v similarly characterizes

dffusivity of momentum in a fluid. But here, we will
"X with the dynamic viscosity, . The viscosity spans
Ay anders of magnitude for geologic materials, and we'll
= In Section 8.7 that for a given material it depends
¥ On temperature, grain size, and in some i.nstafxfes
::"““ the applied stress, Table 8.1 lists typical viscosities

use the principles
(i.e., force balance),
‘and momentum
volume in a flow,
that no mass can
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mass k&m the ?

Going with the Flow: Fluid Mechanics

by materi :
Y Material entering or leaving the volume. Considering

ﬂ\\.\\' i hie s ‘ . . .
M just one dimension, this conservation law is

EXpressed as

D : (‘.v”.\\

g =0

o " o (8.32)
Wwhere v, is the velocity of flow in the x direction.

‘\‘o.nscr\minn of momentum looks at force balance on
all sides of the same small volume, including pressure
gradients in the flow and buoyancy of the volume relative
to the surrounding fluid. The resulting relationship is
called the Navier-Stokes equation, which with flow in
one dimension is

+ Apg (8.33)
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Itis useful to look into the physical meaning of each term
in the Navier-Stokes equation. The first term on the left
side considers how the flow is changing with time (it is
zero if flow is constant). The second term characterizes
the inertia of the flow; this is the term in which turbu-
lence enters (the term is small if the flow is smooth or
laminar). The first term on the right side controls how
sluggish the flow is, or how easily momentum is diffused
across the flow. The second term describes pressure gra-
dients along the flow, which can help or hinder flow. The
last term represents the buoyancy relative to the sur-
rounding flow and should only be included if a compon-
ent of the flow is along the direction of gravity.

8.6.2 Relaxing Topography

When a load is added to or removed from the lithosphere,
the lithosphere bends and the asthenosphere flows to
achieve an isostatic balance. The best-known example of
this process on Earth is post-glacial rebound. During the
last ice age, great sheets of ice weighed down the litho-
sphere, flexing it into the asthenosphere. Ever since that ice
melted, the fluid-restoring force of the asthenosphere has
been pushing the lithosphere back into place.

Because the rebound is controlled by the viscous flow
of the mantle, Equation 8.33 can be solved to describe the
subsequent isostatic rebound of the surface. The full
solution combines the flexural response of the lithosphere
and the fluid response of the asthenosphere and is gener-
ally done numerically. Nevertheless, it has been shown
that the vertical displacement (w) of the topography
recovers with an exponential timescale:

4,
Sl A0 AT - where 7 &~ pg—f (8.34)
Here, w, is the original vertical displacement, and L is the
horizontal length of the original load. This solution holds
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o-shorelines
geolo-

of

on case of w <L. By dating pa'le 5%
(i.e. elevated beaches) since the en(.i of ttlli 1cteimges,c =
gists have been able to determine € .
rebound and, from that, estimate the viscosity
asthenosphere (Figure 8.17). .
j On ot}I:er planetgary bodies, impacts a.ct to re?;ssVe ;}:Z:e
very quickly from the lithosphere, leaving cra mé .
craters undergo isostatic rebound as well. In so ;

i i s the craters can relax com
particularly on icy bodu?s, e ekt Because
pletely, so that no negative topograpily 1. t e
the crater rims have a much shorter horizonta e
scale, the crater rims still often rise above the surface atte
the crater itself has completely rebounded (e-ﬁ-’
Ganymede in Figure 8.17). Images of the surface of the
dwarf planet Ceres (diameter ~960 km) from the Dawn
mission revealed large impact craters that had rebounded.
This observation is a clear indication that Ceres has, or at
least had for some period of time after the large craters
formed, a ductile asthenosphere.

As we'll see in Section 8.7, viscosity is a strong function
of temperature. As temperature increases, viscosity
decreases, and topography relaxes more quickly. Crater
relaxation can therefore be used to uncover changes in
heat flow within a planetary body. Enceladus is an excel-
lent example. As will be described in Section 9.5.3, the
south pole of Enceladus contains tectonic fractures with
high heat flow, but other parts of the surface are geologic-
ally old, as evidenced by high densities of impact craters.
Many of these craters, it turns out, have experienced
significant amounts (up to 90 percent) of relaxation.
Numerical modeling of the process by Bland et al.
(2012) indicates that heat flows comparable to that occur-
ring at the south pole must have occurred in these other
regions at some time in Enceladus’ past.

for the comm

8.6.3 Convection

A fluid layer heated from below and cooled from the top
(a common occurrence in planetary bodies radiating their
heat to space from their surfaces) is gravitationally
unstable. The hot fluid at the base is less dense due to
thermal expansion, and it therefore wants to rise buoy-
antly. Viscous forces in the fluid layer fight against th)ifs

buoyancy; convection can only occur if the buoyanc
force is larger than the viscous forces, 4

Mathematically, the thermal buo
the buoyancy term in the Navier—
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given by
—T )b3
_ gpoo(T1 = 20 "
Ras KU (833)
Here, p, is the standard density of the fluid (befor

heating), o is the volumetric thermal expansion coeff.
cient, T; and T, are the temperatures at the base and top
of the layer, respectively, x is the thermal diffusivity, ang
b is the thickness of the layer. Convection can get started
if Ra is greater than some critical value that depends
strongly on whether the top layer is free to move hori
zontally (mobile lid) or is fixed in place (stagnant lid) (see
Chapter 9 for more detail).

Convection cells can be envisioned somewhat like a
conveyer belt, with warm fluid rising, moving horizon-
tally while it cools to the surface, and the cool fluid falling
back down. The horizontal motion imposes a stress o
the (typically rheologically brittle) surface. If the stress o1
the lithosphere from convection is larger than i
strength, the lithosphere will break, and the resulting
plates can be moved by the convection conveyer. On
the other hand, if the lithosphere is strong enough ©
ﬁthstand convective stresses, it will remain intact Mlld
will not move., As we know, the Earth’s lithosphere ¥
br.oken into tectonic plates that move and subduct along
with the convection cells. No other planetary bodies 4
1:;;;2;3 SS‘;PPON plate tectonics; their lithosphefesf :1:2
COnVectioi rc:‘(;'ng enough to withstand the stresses 0

ling beneath the surfaces.

I .
cr;r:::oih;?;ek’ Wwe have introduced several of .thewmore
each Proces cesses that geodynamicists inves:tlg‘f a .
e g6010gié we ha.ve made some assumptio™ ©
treated rock amate.rlals behave under stress. " Jinedt
elastic way t $ solid materials that respond in d,neou""
Tecoverab] O stress - deformation is instant® ales
€ when the stress is removed, % s

“
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tinearly with stress as described by Youngs mr)dUlis (()ﬁii
& b /:r'r:atf_-d ductile layers as fluids that a]%f?':hé fime,
r t,(.; stress — deformation b‘ii.l ] ;;l rate of
erains when the stress is removed, o t('6 New-
:é;:’orr.fxation scales linearly with applied ,”m%f’ I(e % Real
vonian fluid) as described by dynamic vxs'cr)';lt;“ w(’;())‘n,t e
geologic materials are more complex and 0 i

cleanly in one of these two categories.

iineariy

8.7.1 Visco-Elastic Rheology

Rocks and ices near the surface 0 :
ary bodies are generally brittle — they respond elastically

to stress until their strength is overcome, at which point
they fracture. When rocks and ices are deep enough that
the confining pressure is comparable to or greater tban
their strength, they can be ductile - they flow to achieve
an equilibrium stress. In reality, rocks and ices in almost
any situation exhibit a combination of these behaviors — a
linear elastic response at first, followed by ductile flow,
then fracturing if the stress overcomes the strength and
confining pressure (see Figure 8.3). The dominant behav-
ior we see in a specific situation often depends on the
timescale involved.

Looking at this visco-elastic model as a function of
time, we see that when a stress is first applied, elastic
strain is incurred immediately. As that stress is main-
tained on the (nominally solid) object, strain continues to
increase linearly with time as the object deforms ductilely
(Figure 8.18). In other words, all solid geologic materials
behave elastically over short timescales but, given suffi-
cient time, will flow. A question that follows is: Over what
timescales should we treat a given material as a solid
versus as a fluid? A common way to answer this question

f Earth or other planet-

Strain ————

Time —

Figure 818 Tllustration of visco-elastic behayioy When
: a

ined, elastic strain occyrg

T
¢ it takes for the viscous (duct
ial elastic strain. We can el ¢
ime by dividing the elastic 'stram b"/ the Viscoy
Assuming linear elastic behaymr 3 a gy
(linear) behavior as a fluid, we finq th

s to find the time Fh'a
strain tO equal the init <

strain rate.
and Newtonian
this timescale is
s (836)
™=,
ar modulus (or modulus of rigidity) 5
n 8.2. This quantity is called the Max.
well time, after the same Maxwell .who established th,
famous equations for electromagnetism. It se.ems that he
was conducting long-term pendu¥um experiments, anq
those experiments were compromlsed' by S[]OW extensiop
of the pendulum wire. The Maxwell tlm.e for the Eartlg
mantle is around 100 years, which explains why it trapg.
mits short period seismic waves like a solid, but i
rebounding from the melting of ice sheets as a fluid
The Maxwell time of H,O ice near its melting tempera-
ture is on the order of an hour; warm ice flows fairly
readily under sustained stress.

where G; is the she
described in Sectio

8.7.2 Non-Newtonian Rheology

Some materials do not follow the linear Newtonian flow
law defined in Equation 8.31, and the viscosity of almost
all materials is temperature-dependent. The generalized
relationship between stress and strain rate has the form

c o Tradu
&= Lagte g

(8.37)
Here, d is grain size, E, is an activation energy, V, is an
activation volume, A is a constant, R is the universal gas
constant, and T is temperature. E,, V,, A, n, and m ar¢
determined from experiments. Compared to Equation
8.31, we can write an effective viscosity as

1—n gm
2ol ey
&}

e (838)

Igrrla::iizfzré?’t}:he Visc‘fSitY of a material depends on the
ture, and seve elmatenal, fhie stress applied, the telih i
Solid materir al %arameters intrinsic to the matena.tl. i
crystal lattice ;}i OW as reorganization occurs within ¢ et
e depen(i'm 1S reorganization can happen in differi;le
temperature ethAo : the. material, the stress applied e
Or Vacancies ’thr(; threlatlvel)’ low stress, diffusion of defe%
boundaries ugh the volume of the grains or along 8™
enables flows te occur. Both of these diffusio”

with different - lea.d to Newtonian behavior (1=0) .

ively). At hig}? rain size dependences (1 = 2 and 3, ESPeit'
: er : ; ’

lattice migrate. Pressures, dislocations within the ¢

different graj 'leading {0 non-Newtonian behavior *
grain size dependencies
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e ROIOTATIRS, SEYeSs, and R"f\h\ stre depende
o B e van make dt dithieult o aPlY insighie
j from terestrial geology to ather planetayy bodies

i w\ Jarge moon R\“\\P{\ N a Prime (\x“ml‘l(“_ l!l;m(\;‘
' el would Tike to know whethey convection iy
g e ahell contributes to the compley R

At it ha ~ology on
c e Rt AU has been suggested that plate
REORRY TRAY €Ven oceur on Buropa, it it can e driven

By convection o the fce shell (Kattenhorn g Prockter,

Neies
cles of 2014), Unfortun

the conditions
the flow law

ately, the effective viscosity of ice under
at Europa are not well constrained. Even if
tself were known, there is no way with
CUITent measurements to know the grain size in the ice
shell. The effective viscosity is uncertain by orders of
nitude just from the uncertainty in grain size alone.
Nevertheless, models do favor convection in Europa’s ice
shell, and these models will be tested in the next decade
by NASA’s Europa Clipper mission.

1\\.\3

summary

(oK mamk under SN'ESS‘ strive for balance - they want to relieve that stress as effectively as they can. The way
p reiove stress s through strain, and the strain that a material will undergo when stress is applied depends on its
Aeology. We have seen how planetary surfaces support topography and respond to surface loads. Detailed
saasurements of a body's gravity field provide a window into the interior, at least in terms of how mass is arranged
wlw the surface. The observation from gravity measurements that the giant Tharsis volcanoes on Mars are not in
sastatic balance indicates that the lithosphere must have been extremely thick and strong when they formed, and
anains so now, Yet, relaxation of even relatively small craters on some regions of Saturn’s small moon Enceladus reveals
Moh internal heat flow in those regions in the past.

Manetary surfaces are solid and brittle, and heat transfer through them is by conduction. Surface temperatures are
antrolied primarily through solar heating and therefore change systematically over the course of a day and an orbit.
Measurements of temperature as a function of time, which can be done remotely by measuring thermal flux emitted from
Mesurtace, provide a powerful means to determine properties of the surface, such as grain size and induration. Planetary
Alerors, however, often behave, at least over geologic timescales, as a fluid. Understanding fluid mechanics is therefore
Tkl for assessing the dynamics of planetary interiors. One consequence of more fluid-like behavior is that heat may be
tansterred by convection. When convection occurs, it induces stress in the overlying lithosphere, the effects of which

™y be measurable by planetary geologists.

’
Review Questions
ar elastic material? How are stress and strain related for a
m:mthzs iﬁ :;lli: :iimension affect strain in another dimension?
b some planetary body that is confined on all sides and filled to a depth of
A and &, are both zero, and the vertical stress at any depth z in the basin
g A1IC tive relations in Equation 8.4 to find expressions for the strain in
nstitutiy in the horizontal directions (0. and o,,). Compute these
1 for a sedimentary basin on Earth, assuming p =2100 kg/m’,
\, quantities for an icy sedimentary basin on Titan,
pa. and v=0.3. Compare the results for the two bodies.
cated on the far side of the Moon, is about 8 km deep and
would use the principle of isostasy to compute
under the assumption that the basin-forming impact
and mantle densities of 2800 kg/m* and 3400 kg/m”,

| discuss the reliability of this estimate.

- Whit does it mean to say
lh’l‘ 1? H
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4. Describe how to estimate the thic
Use this technique to compute th‘e :
in Figure 8.8, assuming the plate is 1b'l i
pm = 1000 kg/m", and there is noO fil m F
elastic thickness given in Figure 8.13 tor
Ulfrun region of Venus. i

5. How can topography and gravity measul
surface features?

6. Describe diurnal temperature v

7. Why are some craters on Ganymede,

they still have raised rims? S
8. What does it mean to say that something is a Newt

the effective viscosity of geologic materials? Which
in estimating the viscosities of the man

elastic thickness
oken beneath
flexural

ements be

ariations at the surface

kness of the lithos h

pacific plate beneath

Enceladus, an

tles of other planets (i.€. besi

the relative importance of each in the mantles of planetar

ear a big surface Jogaq
m topograPhY n ad,
; ereff;f}:’e lithosphere on Europa from the dat,
of e 32mis’, E=10GPa, v=03,
Compare your results to valueg of
the Hawaiian islands and the

t‘he load’ g=
basin (psn= 0).

ombined to determine the compensation state of
C

.nd near-surface (top few meters) Qf planetary bodie,
;l other icy bodies not topographic lows? Why d,

onian fluid? What are the various factors that affec

of these factors imposes the largest uncertainty
des Earth)? Compare and contrag

y bodies.

SUGGESTIONS FOR FURTHER READING

Gerya, T. (2010) Introduction to Numerical Geodynamic
Modelling. Cambridge: Cambridge University Press. An
excellent resource for delving more deeply into the
computational techniques necessary for modern
geophysics/geodynamics.

Stacey, F.D., and Davis, P. M. (2008) Physics of the Earth.
Cambridge: Cambridge University Press. This book
presents a complete history of the Earth from a
geophysical perspective.

Turcotte, D., and Schubert, G. (2014) Geodynamics, 3rd
edition. Cambridge: Cambridge University Press. The
classic textbook for learning geodynamics for terrestrial
and planetary applications. The third edition includes

chapters and examples for computational modeling of
geodynamical processes.
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