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[1] We examine relations for hydraulic geometry of alluvial, single-thread gravel bed
rivers with definable bankfull geometries. Four baseline data sets determine relations for
bankfull geometry, i.e., bankfull depth, bankfull width, and down-channel slope as
functions of bankfull discharge and bed surface median sediment size. These relations
show a considerable degree of universality. This universality applies not only within the
four sets used to determine the forms but also to three independent data sets as well.
We study the physical basis for this universality in terms of four relations, the coefficients
and exponents of which can be back calculated from the data: (1) a Manning-Strickler-
type relation for channel resistance, (2) a channel-forming relation expressed in terms
of the ratio of bankfull Shields number to critical Shields number, (3) a relation for critical
Shields number as a function of dimensionless discharge, and (4) a ‘‘gravel yield’’
relation specifying the (estimated) gravel transport rate at bankfull flow as a function of
bankfull discharge and gravel size. We use these underlying relations to explore why the
dimensionless bankfull relations are only quasi-universal and to quantify the degree to
which deviation from universality can be expected. The analysis presented here represents
an alternative to extremal formulations to predict hydraulic geometry.
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1. Introduction

[2] Single-thread, alluvial gravel bed rivers represent an
important class of natural rivers. Here ‘‘gravel bed’’ is used
in a loose sense, and refers to stream reaches with median
grain size Ds50 greater than 25 mm. Many (but by no means
all) such river reaches have a distinct channel and flood-
plain, such that flow spills from the channel onto the
floodplain at a well-defined ‘‘bankfull’’ discharge Qbf. For
such reaches it is possible to define a ‘‘bankfull channel
geometry’’ [Leopold and Maddock, 1953; Leopold et al.,
1964] in terms of a bankfull width Bbf, bankfull depth Hbf

and down-channel bed slope S.
[3] The variation of these parameters can be cast in terms

of power relations of the form

Bbf ¼ cBQ
nB
bf ð1aÞ

Hbf ¼ cHQ
nH
bf ð1bÞ

S ¼ cSQ
�nS
bf ð1cÞ

(Here nB and nH are exponents that are conventionally
denoted as b and f, respectively. The notation adopted here
is intended to clarify the subsequent analysis.) On the basis
of data from gravel bed rivers in Canada, Bray [1982]
determined the following estimates for the exponents:

nB ¼ 0:527 ð2aÞ

nH ¼ 0:333 ð2bÞ

nS ¼ 0:342 ð2cÞ

This work has been extended byHey and Thorne [1986], who
suggest the values 0.52 and 0.39 for nB and nH respectively,
on the basis of an analysis of British gravel bed streams.
Further developments are summarized in Table 2 of Millar
[2005]. Relations of the form of (1a), (1b), and (1c) are not,
however, dimensionally homogeneous, and thus may not
reveal the physics underlying the relations. Parker [1979],
Andrews [1984], Parker and Toro-Escobar [2002], Parker et
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al. [2003] andMillar [2005] developed dimensionless forms
for bankfull geometry of single-thread gravel bed streams,
and Ashmore and Parker [1983] developed similar dimen-
sionless relations for anabranches of braided gravel bed
streams.
[4] The present analysis has two goals. The first and

lesser one is the establishment of quasi-universal dimen-
sionless relations for hydraulic geometry for single-thread,
alluvial gravel bed streams. The second and greater one is
the specification of a framework that allows them to be
derived from a set of underlying physical relations, in a way
that does not rely on extremal hypotheses.

2. Governing Parameters

[5] The following parameters are defined for reaches of
alluvial, single-thread gravel bed rivers: bankfull discharge
Qbf, bankfull width Bbf, bankfull depth Hbf, down-channel
bed slope S, median size Ds50 of the sediment on the
surface of the bed and the acceleration of gravity g. The
following relations for hydraulic geometry at bankfull flow
are postulated:

Bbf ¼ fB Qbf ;Ds50; g; other parameters
� �

ð3aÞ

Hbf ¼ fH Qbf ;Ds50; g; other parameters
� �

ð3bÞ

S ¼ fS Qbf ;Ds50; g; other parameters
� �

ð3cÞ

Examples of ‘‘other parameters’’ include gravel supply, the
type and density of bank vegetation, bank material type
[e.g., Hey and Thorne, 1986; Millar, 2005] and channel
planform. Here the ‘‘other parameters’’ are dropped with the
purpose of determining how closely universality can be
appproximated with the shortest possible list of governing
parameters. Additional parameters are reconsidered later as
factors that can contribute to deviation from universality.
[6] Each of (3a), (3b), and (3c) defines a relation involving

four parameters (e.g., Bbf, Qbf, Ds50 and g in the case of
(3a)) and two dimensions, length and time. The principles of
dimensional analysis allow each relation to be expressed in
terms of two dimensionless parameters. Parker [1979],
Andrews [1984], Parker and Toro-Escobar [2002], Parker
et al. [2003] have used the following forms:

B̂ ¼ f̂ B̂ Q̂
� �

ð4aÞ

Ĥ ¼ f̂ Ĥ Q̂
� �

ð4bÞ

S ¼ f̂ S Q̂
� �

ð4cÞ

where

B̂ ¼ Bbf

Ds50

ð5aÞ

Ĥ ¼ Hbf

Ds50

ð5bÞ

Q̂ ¼ Qbfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

ð5cÞ

Millar [2005] also used similar forms, but included
dimensionless measures of the sediment transport rate and
bank strength in the formulation.
[7] Here we adopt an alternative but equivalent non-

dimensionalization for bankfull width and depth, originally
suggested by Bray [1982]. Defining the dimensionless
parameters ~B and ~H as

~B ¼ g1=5Bbf

Q
2=5
bf

ð6aÞ

~H ¼ g1=5Hbf

Q
2=5
bf

ð6bÞ

we seek relations of the following form:

~B ¼ f̂ ~B Q̂
� �

ð7aÞ

~H ¼ ~f ~H Q̂
� �

ð7bÞ

S ¼ f̂ S Q̂
� �

ð7cÞ

More specifically, we anticipate power relations of the form

~B ¼ aBQ̂
nB ð8aÞ

~H ¼ aHQ̂
nH ð8bÞ

S ¼ aSQ̂
nS ð8cÞ

Note that, as opposed to the coefficients in the relations
(1a), (1b), and (1c), which have dimensions that are entirely
dependent upon the choice of the exponents, the coefficients
in (8a), (8b), and (8c) are dimensionless.
[8] Dimensionless relations involving the forms ~B and ~H

are equivalent to corresponding relations involving B̂ and Ĥ
because according to (5) and (6),

~B ¼ B̂Q̂
�2=5 ð9aÞ

~H ¼ ĤQ̂
�2=5 ð9bÞ

Hey and Heritage [1988] have suggested that dimensionless
formulations of hydraulic geometry may be subject to
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spurious correlation. The formulation adopted here does not
preclude spurious correlation, in that the bankfull discharge
Qbf appears in the dependent variables ~B and ~H as well as
the independent variable Q̂. As illustrated in Appendix A,
however, dimensionless formulations often require that a
dimensioned parameter appear in both the dependent
dimensionless grouping and at least one of the independent
dimensionless groupings. Failing to adhere to this constraint
can lead to physically unsound results.

3. Baseline Data Set

[9] The baseline data set for bankfull geometry of gravel
bed streams used here is composed of four subsets. These
include (1) 16 stream reaches in Alberta, Canada contained
in work by Kellerhals et al. [1972] (and identified in
more detail by Parker [1979]), (2) 23 stream reaches in
Britain contained in work by Charlton et al. [1978],
23 stream reaches in Idaho, USA [Parker et al., 2003],
and (3) 10 reaches of the Colorado River, western Colorado
and eastern Utah, USA [Pitlick and Cress, 2000], for a total
of 72 reaches. These four sets are respectively referred to as
‘‘Alberta,’’ ‘‘Britain I,’’ ‘‘Idaho’’ and ‘‘ColoRiver.’’ The
terminology ‘‘Britain I’’ is used because a second set of
data from Britain is introduced later.
[10] The baseline data set is available at http://cee.uiuc.edu/

people/parkerg/misc.htm. The data for Bbf, Hbf, S and Ds50

for each of the 10 reaches of the Colorado River represent
medians of values for a larger number of subreaches, as
extracted from the compendium in Table A-5 of the appen-
dices of Pitlick and Cress [2000]. The data thus differ
modestly from the data given in Table 1 of Pitlick and Cress
[2002], which are based on averages rather than medians.

[11] The parameters of the baseline set vary over the
following ranges: bankfull discharge Qbf varies from 2.7 to
5440 m3/s; bankfull width Bbf varies from 5.24 to 280 m;
bankfull depth Hbf varies from 0.25 to 6.95 m; down-
channel bed slope S varies from 0.00034 to 0.031; and
surface median grain size Ds50 varies from 27 to 167.5 mm.
Only the data set of Charlton et al. [1978] includes
measured values for sediment specific gravity. The average
value for their 23 reaches is 2.63. In all other cases the
sediment specific gravity has been assumed to be the
standard value for quartz, i.e., 2.65.

4. Quasi-Universal Relations for Hydraulic
Geometry

[12] Figure 1 shows on a single plot ~B, ~H and S as
functions of Q̂. The relations define clear trends across four
and one half decades of variation of Q̂. Standard linear
regression yields the following power law forms for dimen-
sionless bankfull hydraulic geometry:

~B ¼ 4:63 Q̂
0:0667

i:e: aB ¼ 4:63; nB ¼ 0:0667� 0:027 ð10aÞ

~H ¼ 0:382 Q̂
�0:0004

i:e: aH ¼ 0:382; nH ¼ �0:0004� 0:027

ð10bÞ

S ¼ 0:101 Q̂
�0:344

i:e: aS ¼ 0:101; nS ¼ 0:344� 0:066

ð10cÞ

In the above relations, the uncertainties in the exponents
were computed at the 95% confidence level. At the 95%

Figure 1. Dimensionless bankfull width ~B, dimensionless bankfull depth ~H , and down-channel bed
slope S as functions of dimensionless bankfull discharge Q̂. The Alberta, Britain I, Idaho, and Colorado
subsets of the baseline data set are discriminated by different symbols. Also shown are power relations
derived from regression on the lumped data set.
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confidence level the prediction interval is a factor of 3.0 for
(10a), 3.0 for (10b) and 14.8 for (10c). These relations turn
out upon reduction with (9a, b) to be very close to
the relations for B̂, Ĥ and S versus Q̂ given by Parker and
Toro-Escobar [2002] and Parker et al. [2003].
[13] The reader should note that ordinary least squares

regression has been used here and elsewhere in this paper in
preference to, e.g., reduced major axis regression. While
there are valid arguments favoring the latter, these argu-
ments do not appear to apply to the present case, as outlined
in Appendix B.
[14] Figure 1 and regression relation (10b) indicate that

for all practical purposes (10b) can be replaced with
constant value

~H � ~Ho ¼ 0:382 ð11Þ

over the entire range of Q̂. Specifically, this yields the
dimensional form

Hbf ¼
0:382

g1=5
Q

2=5
bf ð12Þ

The corresponding dimensioned forms for Bbf and S are

Bbf ¼
4:63

g1=5
Q0:4

bf

Qbfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

� �0:0667

ð13Þ

S ¼ 0:101
Qbfffiffiffiffiffiffiffiffiffiffiffi

gDs50

p
D2

s50

� ��0:344

ð14Þ

[15] The exponents of Qbf in (12), (13) and (14) are
similar to those found by other authors [e.g., Millar, 2005,
Table 2], and in particular to those found by authors whose
data sets have been included in the present baseline set. Of
more significance here is the result that a single set
of exponents and coefficients provides a reasonable
description of the entire baseline data set, as shown in
Figure 1. The data points of the four sets all intermingle one
among the other, indicating a substantial degree of universal
behavior among data from four distinct geographical
regions.
[16] The relations (10a), (11) and (10c) are nevertheless

described as ‘‘quasi-universal’’ here because the effects of
the ‘‘other parameters’’ in (3) are discernible. Figure 2a
illustrates deviation from universality; the Britain I rivers
are systematically somewhat narrower than the Alberta
rivers. The Britain I rivers are also systematically somewhat
deeper than the Alberta rivers, as quantified in terms of the
plot of width-depth ratio Bbf/Hbf versus Q̂ of Figure 2b. The
role of the width-depth ratio has been emphasized by Cao
and Knight [1996, 1998] and Mengoni et al. [2004].
[17] One reason why the Britain I streams may have

lower values of Bbf/Hbf than the Alberta streams may
be the more humid climate and consequent denser bank
vegetation in the British streams, so increasing the effective
‘‘bank strength’’ relative to the Alberta streams [e.g.,
Charlton et al., 1978; Hey and Thorne, 1986; Millar,
2005]. Another reason may be the likelihood that the British
streams have a lower supply of gravel (after normalizing for
water supply) than the Alberta streams. Both of these factors
are discussed in more detail below.
[18] The scatter in Figures 1 and 2a is at least partly due

to different protocols for data collection, as outlined in the
original references. It also likely embodies an element of
measurement error in the parameters in question. Perhaps
the parameter that is most subject to measurement error is
the surface median grain size Ds50; in most cases the
samples of bed material from which it was determined
likely did not satisfy the rigorous guidelines of Church
et al. [1987]. The down-channel bed slope S is subject to
error if the reach used to determine it is not sufficiently
long. In addition, bankfull width and depth Bbf and Hbf are
subject to error if they are not based on appropriately
defined reach averaged characteristics, and bankfull
discharge Qbf may be difficult to discern from a rating
curve if there is not a clear break in the stage-discharge
relationship as the flow spills overbank. A number of these
issues are discussed in the careful data compilation of
Church and Rood [1983].
[19] In Figure 1 data for slope show the most scatter, even

though there seem to be no systematic differences among
the four data sets. As noted above, part of this scatter may

Figure 2. (a) Plot of ~B versus Q̂ for the baseline data set,
in which the Alberta, Britain I, Idaho, and Colorado data
subsets are distinguished by different symbols. (b) Plot of
Bbf /Hbf versus Q̂ for the baseline data set, in which the
Alberta, Britain I, Idaho, and Colorado data subsets are
distinguished by different symbols.
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be due to measurement error, particularly in the measurement
of Ds50 and S. There is, however, another compelling reason
for scatter in the slope relation. Mobile bed rivers are free to
change their bankfull width and depth over short geomorphic
time (e.g., hundreds or thousands of years). Slope changes
other than those associated with changes in sinuosity, how-
ever, require a complete restructuring of the long profile of
the river. Such a restructuring must occur over much longer
geomorphic timescales, over which such factors as tecto-
nism, climate change and sea level variation make them-
selves felt (and thus enter as ‘‘other parameters’’ (3)). This

notwithstanding, the slope relation still shows a consider-
able degree of systematic variation.
[20] Both the predictive quality of the relations (10a), (11),

and (10c) and the extent to which ‘‘other parameters’’ are
felt can also be studied by plotting values of Bbf, Hbf and S
predicted from (10a), (11), and (10c) versus the reported
values. Figure 3a shows predicted versus observed values
for Bbf. All of the 72 predicted values are between 1/2 and
2 times the reported values. Figure 3b shows predicted
versus observed values for Hbf; again, all of the 72 predicted
values are between 1/2 and 2 times the reported values.

Figure 3. (a) Predicted versus reported bankfull width Bbf for the baseline data set. (b) Predicted versus
reported bankfull depth Hbf for the baseline data set. (c) Predicted versus reported down-channel bed
slope S for the baseline data set.
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Figure 3c shows predicted versus observed values of S;
52 of the 72 predicted values, or 72% are within 1/2 and
2 times the reported values.
[21] Variation within the data sets can be studied in terms

of the average value of the ratio (X)pred/(X)rep for each set,
where (X)pred denotes the predicted value of parameter X
and (X)rep denotes the reported value. These results are
given in Table 1. As noted above, the Alberta streams are
seen to be systematically wider and shallower, and the
Britain I streams narrower and deeper, than that predicted
by the regression relations. The average ratios (Bbf)pred/
(Bbf)rep, (Hbf)pred/(Hbf)rep and (S)pred/(S)rep are nevertheless
in all cases sufficiently close to unity to strengthen the case
for quasi-universality of the relations.

5. Comparison of the Regression Relations
Against Three Independent Sets of Data

[22] Three independent sets of data on gravel bed rivers
are used to test the regression relations presented above. The
first of these consists of 24 stream reaches from Colorado
compiled by Andrews [1984], none of which includes
the Colorado River itself. This set is referred to here
as ‘‘ColoSmall.’’ The ranges of parameters for the

‘‘ColoSmall’’ data mostly fall within the corresponding
ranges of the baseline data set, but the former set does
include some smaller streams. The second of these consists
of 11 stream reaches from Maryland and Pennsylvania,
USA [McCandless, 2003], here referred to as ‘‘Maryland’’
for short. The original data set contained 14 reaches, but
three of these were excluded because (1) the stream was
bedrock or (2) the value of Ds50 was substantially below
the range of the baseline set (27 mm to 167.5 mm) or c)
the value of S was substantially above the range of the
baseline set (0.00034 to 0.031). The third set of data is the
British set of 62 reaches compiled by Hey and Thorne
[1986]. The specific reaches in this set, which we here
term ‘‘Britain II’’ for short, are largely different from those
in the Britain I compilation of Charlton et al. [1978] used
earlier to derive (10a), (11), and (10b).
[23] The ColoSmall, Maryland and Britain II data are

plotted in Figure 4, which has the same format as Figure 1.
The regression lines in Figure 4 are (10a), (11), and (10c),
i.e., those determined using only the baseline data set. The
ColoSmall and Maryland data sets show no systematic
deviation from the regression lines determined from the
baseline data set. The Britain II data set shows the same
deviation as the Britain I data set; that is, the channels tend
to be somewhat narrower and deeper.
[24] This systematic deviation is explored in more detail

in Figures 5a, 5b, and 5c, where (Bbf)pred is plotted against
(Bbf)rep, (Hbf)pred is plotted against (Hbf)rep and (S)pred is
plotted against (S)rep, respectively. In Figure 5a all but 4 of
the 97 predicted values of bankfull width for the ColoSmall,
Maryland and Britain II sets are between 1/2 and 2 times the
reported values. The 4 exceptions are all Britain II reaches,
and in all 4 cases (10a) overpredicts the width.
[25] In Figure 5b all but 1 of the 97 predicted values of

bankfull depth for the ColoSmall, Maryland and Britain II

Table 1. Average Values for (X)pred/(X)rep for Seven Data Setsa

Average of
Discrepancy Ratio (Bbf)pred/(Bbf)rep (Hbf)pred/(Hbf)rep (S)pred/(S)rep

Alberta 0.83 1.27 1.16
Britain I 1.30 0.81 1.32
Idaho 0.97 1.08 1.38
ColoRiver 0.98 1.07 1.00
ColoSmall 1.06 1.10 0.87
Maryland 1.00 0.99 1.25
Britain II 1.34 0.91 0.99

aHere X = bankfull width Bbf, bankfull depth Hbf, and down-channel
slope S.

Figure 4. Dimensionless bankfull width ~B, dimensionless bankfull depth ~H , and down-channel bed
slope S as functions of dimensionless bankfull discharge Q̂ for the ColoSmall, Maryland, and Britain II
data subsets, along with the power regression lines determined from the baseline data set.
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sets are between 1/2 and 2 times the reported values. The
single exception is a Britain II reach, for which (11) under-
predicts the depth.
[26] In Figure 5c 78 of the 97 predicted values for slope

for the ColoSmall, Maryland and Britain II sets, or 80%, are
within 1/2 and 2 of the reported values. Of the remaining
19 values, 3 are ColoSmall reaches, 6 are Maryland reaches
and 10 are Britain II reaches; all but three of these values
correspond to underpredictions of slope. Averages of the

ratio of predicted to reported values for the ColoSmall,
Maryland and Britain II sets are given in Table 1.
[27] A comparison of the values given in Table 1 allows

the following initial conclusions. The ColoSmall, Maryland
and Britain II data sets fit within the quasi-universal
framework of the baseline data set. The Britain II data,
however, show the same bias toward narrower, deeper
channels as the Britain I set.

Figure 5. (a) Predicted versus reported bankfull width Bbf for the ColoSmall, Maryland, and Britain II
data subsets. (b) Predicted versus reported bankfull depth Hbf for the ColoSmall, Maryland, and Britain II
data subsets. (c) Predicted versus reported down-channel bed slope S for the ColoSmall, Maryland, and
Britain II data subsets.
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[28] The largest deviation from universality is for the case
of bankfull width of the Britain II streams, where Bbf is on
the average overpredicted by (10a) by a factor of 1.34.
Information from Hey and Thorne [1986] allows a quanti-
fication of this deviation. The authors have classified
reaches of the data set on a scale from 1 to 4 in terms of
the density of bank vegetation, with 1 denoting the lowest
density. In Figure 6 the predicted and reported values of Bbf

are given with the data discriminated according to vegeta-
tion density. Equation (10a) mildly underpredicts the bank-
full width for the streams with the least dense bank
vegetation, and noticeably overpredicts bankfull width for
the streams with the densest bank vegetation The average of
the discrepancy ratios (Bbf)pred/(Bbf)rep for the four classes
of vegetation are as follows: class 1, 0.93; class 2, 1.21;
class 3, 1.45 and class 4, 1.66. As previously concluded by
Hey and Thorne [1986] in regard to this data set, vegetation
appears to exert a measurable control on bankfull width. In
the present case this control is expressed as a deviation from
universality in the dimensionless relation for bankfull width,
with higher bank vegetation favoring narrower channels.
The channels closest to universality are those with the
lowest density of vegetation.
[29] The above observation concerning bank vegetation is

broadly consistent with observations of vegetation effects
on multithread channels reported by Gran and Paola [2001]
and Tal et al. [2004]. A further step in the analysis would be
to quantify the reduction in width with suitable measures of
vegetal influence, including areal stem and root density,
vegetation height, etc. A first important step in this direction
has been made by Millar [2005], who has quantified the
combined effects of bank vegetation and cohesive bank soil
into a ratio of bank critical Shields number to bed critical
Shields number.

6. Toward the Physics Underlying the
Dimensionless Relations

[30] Equations (10a), (11), and (10c) presumably reflect
the underlying physics of alluvial, single-thread gravel bed

streams. It is thus useful to ask what physical assumptions
would yield these same equations as a result. The analysis
presented here is of necessity ‘‘broad brush,’’ but is never-
theless intended to identify the factors controlling relations
for hydraulic geometry.
[31] We begin by defining suitable parameters. Boundary

shear stress at bankfull flow is denoted as tb,bf, water
density is denoted as r, sediment density is denoted as rs
volume gravel bed load transport rate at bankfull flow is
denoted as Qb,bf and cross-sectionally averaged flow veloc-
ity is denoted as Ubf. Water conservation requires that

Ubf ¼
Qbf

Bbf Hbf

ð15Þ

The normal flow approximation is used here to evaluate the
boundary shear stress tb,bf and the shear velocity at bankfull
flow u*,bf :

tb;bf ¼ rgHbf S ð16aÞ

u
*;bf

¼
ffiffiffiffiffiffiffiffiffi
tb;bf
r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gHbf S

p
ð16bÞ

The submerged specific gravity R of the gravel is defined as

R ¼ rs
r
� 1 ð17Þ

For natural sediments R is usually close to the value of 1.65
for quartz. The Shields number tbf* and Einstein number qbf*,
both at bankfull flow and based on sediment size Ds50, are
defined as

tbf* ¼ tb;bf
rRgDs50

ð18aÞ

qbf* ¼ Qb;bf

Bbf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RgDs50

p
Ds50

ð18bÞ

Figure 6. Predicted versus reported bankfull width Bbf for the Britain II data stratified according to
vegetation density. Class 1 refers to the lowest, and Class 4 refers to the highest vegetation density.
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In addition, a dimensionless bankfull gravel bed load
transport rate Q̂b analogous to the dimensionless water
discharge Q̂ is defined as

Q̂b ¼
Qb;bfffiffiffiffiffiffiffiffiffiffiffi

gDs50

p
D2

s50

ð19Þ

[32] We assume that the relations that underlie (10a), (11)
and (10b) involve (1) frictional resistance, (2) transport of
gravel, (3) a channel-forming Shields number, (4) a relation
for critical Shields number for the onset of gravel motion
and (5) a relation for gravel ‘‘yield.’’ (The reason for the
quotes becomes apparent below.) Frictional resistance is
described in terms of a relation of Manning-Strickler type:

Ubf

u
*;bf

¼ ar

Hbf

Ds50

� �nr
ð20aÞ

where the dimensionless parameters ar and nr are to be
determined. Reducing with (15) and (16b),

Qbf

Bbf Hbf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gHbf S

p ¼ ar

Hbf

Ds50

� �nr
ð20bÞ

Gravel transport is described in terms of the Parker [1978]
approximation of the Einstein [1950] relation applied to
bankfull flow:

qbf* ¼ aG tbf*
� �3=2

1� tc*

tbf*

 !4:5
ð21Þ

where tc* is a critical Shields number for the onset of motion
and aG is a coefficient equal to 11.2. Channel form is
described in terms of a relation of the form

tbf* ¼ rtc* ð22Þ

as described by Parker [1978], Paola et al. [1992], Parker
et al. [1998], and Dade and Friend [1998]. As noted below,
the parameter r provides a surrogate for bank strength. As
such it is likely related to the parameter m0 used by Millar
[2005] to characterize bank strength. Both Millar [2005]
and Knight et al. [1994], emphasize the distinction between
bed and bank shear stresses.
[33] Equation (21) reduces with (16a) and (18a) to

Qb;bfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

¼ aG

R

Bbf

Ds50

Hbf S

Ds50

� �3=2
1� 1

r

� �4:5
ð23Þ

In the Parker [1978] approximation of the Einstein [1950]
bed load relation tc* is taken to be a constant equal to 0.03.
Here it is taken to be a (weak) function of Q̂ such that the
average value for the baseline data set is 0.03;

tc* ¼ atQ̂
nt ð24Þ

As will become apparent below, the above form is dictated
by the forms of (10a), (11), and (10c) and the framework of

the present analysis. Between (5c), (16a), (18a), and (22) we
find that (24) reduces to

Hbf S

RDs50

¼ rat
Qbfffiffiffiffiffiffiffiffiffiffiffi

gDs50

p
D2

s50

� �nt
ð25Þ

Finally, a gravel ‘‘yield’’ relation describes how the gravel
bed load transport rate at bankfull flow Qb,bf varies with
bankfull flow Qbf and grain size Ds50;

Q̂b ¼ ayQ̂
ny ð26aÞ

where ay and ny are dimensionless parameters that we
compute below. Reducing (26a) with (5a) and (19),

Qb;bfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

¼ ay

Qbfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

� �ny
ð26bÞ

Between (23) and (26b),

aG

R

Bbf

Ds50

Hbf S

Ds50

� �3=2
1� 1

r

� �4:5
¼ ay

Qbfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

� �ny
ð27Þ

[34] The above relations contain the unevaluated dimen-
sionless coefficients ar, at and ay and exponents nr, nt and
ny. We now compute these parameters so as to yield
precisely the coefficients aB and aS, exponents nB and nS
and the constant ~Ho determined by regression from
the baseline data set, i.e., the values given in (10a), (10c),
and (11). Before completing this step, however, some
elaboration of the above relations is appropriate.
[35] Equation (20a) is a Manning-Strickler relation of the

general form that Bray [1979] and Parker [1991] have
applied to gravel rivers; it is also similar to related loga-
rithmic forms for gravel bed rivers [e.g., Limerinos, 1970;
Hey, 1979; Bray, 1979]. As such, it is appropriate for a
broad brush formulation. There are two reasons why it
cannot be accurate in detail. The first of these is the fact
that the characteristic grain size on which grain roughness
(skin friction) depends is a size coarser than Ds50; com-
monly used sizes are Ds90 and Ds84. The second of these is
the likelihood that not all the drag in gravel bed rivers
at bankfull flow is due to skin friction. Bar structures,
planform variation and bank vegetation can give rise to at
least some form drag [e.g., Millar, 1999]. The issue of form
drag is discussed in more detail below.
[36] The Parker [1978] approximation of the Einstein

[1950] bed load transport relation embodied in (21) is also
an appropriate broad brush relation for gravel bed rivers.
There are at least three reasons why it cannot be accurate in
detail: (1) it does not account for gravel mixtures [e.g.,
Parker, 1990;Wilcock and Crowe, 2003], (2) no attempt has
been made to remove the effect of form drag (which would
reduce the total bed load transport rate), and (3) no attempt
has been made to account for preferential ‘‘patches’’ or
‘‘lanes’’ (which would increase the total transport rate
[Paola and Seal, 1995]).
[37] The original derivation of the relation for channel

form (22) presented by Parker [1978] does not account for
the effect of form drag or planform variation, both effects
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that are felt here. This notwithstanding, Paola et al. [1992]
and Parker et al. [1998] have shown its value as a broad
brush relation.
[38] According to (24) the critical Shields number tc* at

the onset of motion depends on dimensionless discharge Q̂.
In the original Parker [1978] approximation of the Einstein
[1950] bed load transport relation tc* is a constant equal to
0.03. We demonstrate below, however, that the exponent nt
in (24) is very small.
[39] Finally, the gravel ‘‘yield’’ relation (26a) does not

involve mean annual gravel yield, but rather the gravel
transport rate at bankfull flow. One presumably scales with
the other, but the details of the scaling have yet to be
worked out. The ‘‘yield’’ relation relates to processes at the
scale of the drainage basin rather than local in-channel
processes. More specifically, it implies that catchments
organize themselves to provide gravel during floods such
that the gravel discharge scales as a power law of the water
discharge. Equation (26a) is the most empirical of the
relations used here.
[40] Substituting (10a), (11), and (10c) into (20b), (25),

and (27) results in the evaluations

ar ¼ a�1
B a�1=2

S
~H
� 3=2ð Þþ 5=4ð ÞnS� 5=2ð ÞnB½ �
o ð28aÞ

nr ¼
5

2

1

2
nS � nB

� �
ð28bÞ

at ¼
~HoaS

rR
ð29aÞ

nt ¼
2

5
� ns ð29bÞ

ay ¼
aG 1� 1

r

� �4:5
aB

~H
3=2

o a3=2
S

R
ð30aÞ

ny ¼ 1þ nB �
3

2
nS ð30bÞ

The parameter r is evaluated as follows. Figure 7 shows a
plot of tbf* as computed from (16a) and (18a), i.e.,

tbf* ¼ Hbf S

RDs50

ð31Þ

versus Q̂ for the baseline data set. The average value htbf*i
for the baseline data set is found to be

htbf*i ¼ 0:0489 ð32Þ

Using (22) and the original estimate of tc* of 0.03 in the
Parker [1978] approximation of the Einstein [1950] bed load
transport relation, we obtain the following estimate for r:

r ¼ 1:63 ð33Þ

[41] Substitution of (10a), (10c), (11) and (33) into (28),
(29) and (30) yields the values for ar, at, aY, nr, nt and ny:

ar ¼ 3:71 ð34aÞ

at ¼ 0:0143 ð34bÞ

ay ¼ 0:00330 ð34cÞ

Figure 7. Plot of the bankfull Shields number tbf* for the baseline data set. Also included are the line
tbf* = 0.0489 corresponding to the average value for the baseline data set, relation (38) for tbf*, the
estimate of critical Shields number tc* = 0.03, and relation (36) for critical Shields number.
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nr ¼ 0:263 ð34dÞ

nt ¼ 0:0561 ð34eÞ

ny ¼ 0:551 ð34fÞ

and thus the following evaluations for (20a), (24) and (26):

Ubf

u
*;bf

¼ 3:71
Hbf

Ds50

� �0:263
ð35Þ

tc* ¼ 0:0143 Q̂
0:0561 ð36Þ

Q̂b ¼ 0:00330 Q̂
0:551 ð37Þ

In addition, between (22), (33) and (36) it is found that

tbf* ¼ 0:0233 Q̂
0:0561 ð38Þ

[42] The exponent in the resistance relation (35) of 0.263
is somewhat larger than the standard Manning-Strickler
exponent of 1/6 ffi 0.167. Relations (38) for bankfull Shields
number and (37) for critical Shields number show a very
weak dependence on Q̂. This weak dependence is reflected
in the baseline data set: a direct regression of the data of
Figure 7 yields a nearly identical relation with a coefficient
of 0.0230 and an exponent of 0.0572. The exponent is
significantly different from zero only at the 90% level, but
not at 95%; p = 0.078. This notwithstanding, (36) represents
an empirical improvement over a constant critical Shields
number of 0.03, for the following reason. Most alluvial
gravel bed rivers can be expected to be competent to move
their median surface size Ds50 at bankfull flow [e.g.,
Andrews, 1983; Hey and Thorne, 1986]. In the case of a
constant critical Shields number of 0.03, 21 of 72 reaches in
Figure 7, or 29% plot below the threshold of motion at
bankfull flow, whereas in the case of (36) only 12 reaches,
or 17% plot below the threshold of motion. This empirically
derived weak dependence of tc* on Q̂ may represent a
consequence of form drag.
[43] The exponent in the gravel ‘‘yield’’ relation of (37)

indicates that the gravel transport rate at bankfull flow
should increase as about the square root of the bankfull
discharge. Thus the volume concentration of transported
gravel should decline downstream. Since water discharge
usually increases nearly linearly with contributing drainage
area, the implication is that ‘‘gravel yield’’ increases with
contributing area at a rate that is markedly slower than
linear, i.e., roughly as the 0.5 power of contributing area.
The explanation and implications of this inference remain to
be explored in future work. Irrespective of its origin, (37)
likely expresses a property of how drainage basins organize
themselves, rather than local properties in the channel. It is
likely, however, that as down-channel slope S drops with
increasing water discharge in accordance with (10c), the

adjacent hillslopes often become less steep, so delivering
less sediment (and thus less gravel) for the same unit
rainfall. This reduced gravel delivery is likely mitigated
by downstream fining of the gravel itself.

7. Quantification of Deviation From Universality

[44] The derivation of the physical relations underlying
hydraulic geometry allows for a quantification of deviations
from universality. This further allows for a characterization
of the effect of the ‘‘other’’ parameters in (3a) � (3c). In
order to do this, the physical relations of the previous
section are adopted as primary. The derivation leading to
(28) � (30) is then inverted so that the coefficients and
exponents in the dimensionless relations for hydraulic
geometry become functions of the parameter r, and coef-
ficients ar, at and ay and the exponents nr, nt and ny of
the physical relations. This yields the following coefficients
and exponents describing generalized power relations for
hydraulic geometry:

aB ¼ ayffiffiffi
R

p
aG 1� 1

r

� �4:5
ratð Þ3=2

ð39aÞ

nB ¼ 1

5
� 1

2
nt �

2

5
nr ð39bÞ

~Ho ¼
aG 1� 1

r

� �4:5
rat

ayar

2
6664

3
7775

1

1þ nR

ð40Þ

aS ¼ Rat

aG 1� 1

r

� �4:5
rat

ayar

2
6664

3
7775
� 1

1þ nR

� �

ð41aÞ

nS ¼ 2

5
� nt ð41bÞ

[45] Here we examine the effect of variation of the
following parameters on the deviation from universality: r,
ar and ay. This deviation is expressed in terms of the
parameters aB, ~Ho and aS as specified by (39a), (40) and
(41a), respectively. The parameter r, i.e., the ratio of bank-
full Shields number to critical Shields number, can be
thought of as a measure of ‘‘bank strength,’’ in that channels
with stronger banks can maintain higher values of tbf*
relative to tc* [see also Millar, 2005]. Using information
from Rice [1979] and Ashmore [1979], Parker [1982]
deduced a mean value of tbf* of 0.0420, and thus a value
of r of about 1.4 for anabranches of the braided gravel bed
Sunwapta River, Jasper National Park, Canada, which flows
on an unvegetated valley flat. This value represents a lower
limit in the absence of vegetation and cohesive sediment to
add bank strength. The average value of r of 1.63 deduced
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for the baseline data set presented here is rather higher. The
Britain II data can be used to provide a qualitative measure
of the effect of bank vegetation density on r. Figure 8 shows
a plot of the average value of r for each vegetation density
class of the Britain II data. Here r is calculated in the same
way as for the baseline data, i.e., from (31), (22), and an
estimated value of tc* of 0.03. The parameter r takes
the following values in order of vegetation density: 1.49
(class 1, lowest vegetation density); 1.63 (class 2), 1.92
(class 3) and 2.67 (class 4, highest vegetation density). For
reference, the value of r determined from the baseline data
set is 1.63. In testing the effect of varied r on the predicted
values of aB, ~Ho and aS, r is allowed here to vary from 0.9 to
1.1 times the baseline value of 1.63.
[46] Channel resistance decreases as the parameter ar in

the Manning-Strickler relation (20a) increases. This can be
seen by defining a dimensionless resistance coefficient Cf as

Cf ¼
tb;bf
rU2

bf

ð42Þ

Between (15), (16a), (20b), and (42) we find that

Cf ¼ a�2
r

Hbf

Ds50

� ��2nr

ð43Þ

Here ar is allowed to vary from 0.8 to 1.2 times its baseline
value of 3.71, and the associated values of aB, ~Ho and aS

are predicted accordingly. At the lower value the resistance
coefficient Cf is increased by a factor of 1.56; at the higher
value Cf is decreased by a factor of 0.69.
[47] Gravel supply increases linearly with increasing

parameter ay in the ‘‘gravel yield’’ relation (26a). Here ay

is allowed to vary from 0.5 to 1.5 times its baseline value of
0.00330, and the associated values of aB, ~Ho and aS are
predicted accordingly.

[48] The effects of the variation of r, ar and ay on
coefficients aB and aS in (39a) and (41a), respectively,
and the parameter ~Ho in (40) are summarized in Table 2 and
Figures 9a, 9b, and 9c. The effect of varying r is illustrated
in Figure 9a. Increasing r (i.e., increasing ‘‘bank strength’’)
from 0.9 to 1.1 times the baseline value results in an
bankfull channel that is increasingly narrower and has an
increasingly lower bed slope. A comparison with the data in
Figure 9a suggests that bank strength is one reason why the
Alberta reaches are wider and shallower than the Britain I
reaches.
[49] The effect of varying ar is studied in Figure 9b.

Decreasing ar from 1.2 to 0.8 times the baseline value, and
thus increasing the channel resistance coefficient from 0.69
to 1.56 times that which would be predicted using the
baseline value of ay, results in a bankfull channel that is
increasingly deep and has an increasingly lower slope.
Changing ar has no effect on channel width.
[50] The effect of varying ay is shown in Figure 9c.

Increasing ay (and thus gravel supply) from 0.5 to 1.5 times
the baseline value results in a bankfull channel that is
increasingly wider, shallower and steeper. A comparison

Table 2. Effect of Variation of the Parameters r, ar , and ay on the

Parameters ~Ho, aB, and ay

r r Factor ~Ho aB aS

1.79 1.1 0.696 2.19 0.0578
1.63 1 0.400 4.63 0.101
1.47 0.9 0.184 12.97 0.218

ay ay Factor ~Ho aB aS

0.00531 1.5 0.290 6.95 0.139
0.00354 1 0.400 4.63 0.101
0.00177 0.5 0.692 2.32 0.0581

ar ar Factor ~Ho aB aS

4.11 1.2 0.346 4.63 0.134
3.43 1 0.400 4.63 0.1001
2.74 0.8 0.477 4.63 0.0707

Figure 8. Plot of the parameter r estimating the ratio of bankfull Shields number to critical Shields
number as a function of vegetation density for the Britain II data. Class 1 refers to the lowest, and Class 4
refers to the highest vegetation density.
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Figure 9
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with the data in Figure 9c suggests that another reason why
the Alberta streams are wider and shallower than the Britain I
streams may be that they have a higher gravel supply.

8. Predictor for Bankfull Discharge

[51] In general bankfull discharge should be determined
from a rating curve of discharge versus stage, or by other
direct methods [Navratil et al., 2004; Knight, 2005]. In
practice, however, such information is often not available.
[52] Equation (35) reduced with (16b) yields the following

relation:

Ubf

u
*;bf

¼ Qbf

Bbf Hbf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gHbf S

p ¼ 3:71
Hbf

Ds50

� �0:263
ð44Þ

This relation provides a means for estimating bankfull
discharge Qbf from measured channel parameters Bbf, Hbf,
S and Ds50. In Figure 10 the values of Qbf predicted from (44)
are compared against the measured values for the four baseline
data sets used to derive (44). As expected, (44) passes through
the middle of the data set from which it was determined by
regression. Of more interest is the scatter. We find that 93%
of the predicted values are seen to be between 1/2 and 2 times
the reported values.
[53] The scatter in the data of Figure 10 is very small for

measured discharges above 500 m3/s. Most of these points

refer to the Colorado River. The values for bankfull
discharge for the ten reaches of the Colorado River are
characteristic values determined with the use of a form of
Manning’s relation calibrated site specifically to the field
data [Pitlick and Cress, 2000]. Evidently this procedure has
reduced the scatter.
[54] An independent test of (44) is given in Figure 11 using

the ColoSmall, Maryland, Britain II data sets. All 97 pre-
dicted values are seen to be between 1/2 and 2 times the
reported values.
[55] The coefficient and exponent of (44) were back

calculated from the dimensionless relations for hydraulic
geometry. A direct regression using the baseline data set
yields a very similar result:

Ubf

u
*;bf

¼ 4:39
Hbf

Ds50

� �0:210
ð45Þ

Both these relations are in turn similar to an earlier one from
Bray [1979], which is based on a subset of the data used
here (Alberta):

Ubf

u
*;bf

¼ 3:85
Hbf

Ds50

� �0:281
ð46Þ

Figure 10. Predicted versus reported bankfull discharge for the baseline data set, discriminated
according to subset.

Figure 9. (a) Dimensionless bankfull width ~B, dimensionless bankfull depth ~H , and down-channel bed slope S as
functions of dimensionless bankfull discharge Q̂, showing the predictions of the generalized hydraulic geometry relations as
the parameter r is varied from 0.9 to 1.1. Increasing r is associated with increasing ‘‘bank strength.’’ Also shown is the
baseline data set discriminated according to subset. (b) Dimensionless bankfull width ~B, dimensionless bankfull depth ~H ,
and down-channel bed slope S as functions of dimensionless bankfull discharge Q̂, showing the predictions of the
generalized hydraulic geometry relations as the parameter ar is varied from 0.8 to 1.2. Increasing ar is associated with
decreasing channel resistance. Also shown is the baseline data set discriminated according to subset. (c) Dimensionless
bankfull width ~B, dimensionless bankfull depth ~H , and down-channel bed slope S as functions of dimensionless bankfull
discharge Q̂, showing the predictions of the generalized hydraulic geometry relations as the parameter ay is varied from
0.5 to 1.5. Increasing ay is associated with increasing gravel supply. Also shown is the baseline data set discriminated
according to subset.
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All three relations are shown in Figure 12; (44) is the only
one of them that is specifically derived from the hydraulic
relations (10a), (11), and (10c).

9. Form Drag

[56] The resistance to flow in a river can be partitioned
into skin friction, i.e., that part of the drag that acts directly
on the grains themselves, and form drag, i.e., that part
associated with bed forms such as bars, channel planform
irregularities, etc. Parker and Peterson [1980] have argued
that form drag in gravel bed streams is significant at low
flow, but may be neglected at the flood flows that move
gravel because the bars are effectively drowned. Millar
[1999], on the other hand, has argued that form drag may
be measurable at flood flows as well. The present analysis
provides a basis for quantifying the partition between skin
friction and form drag in gravel bed streams.

[57] An appropriate relation for the resistance coefficient
Cfs due to skin friction alone (here applied to bankfull
conditions) is

C
�1=2
fs ¼ 8:1

Hbf

ks

� �1=6
ð47Þ

where H denotes flow depth and ks is a roughness height
given as

ks ¼ 2 Ds90 ð48Þ

and Ds90 is the surface size such that 90 percent is finer
[Parker, 1991; Wong, 2003; Wong and Parker, 2006]. Total
channel resistance is estimated with (44), which reduces
with (16b) and (42) to the form

C
�1=2
f ¼ 3:71

Hbf

Ds50

� �0:263
ð49Þ

Figure 12. Plot of three forms for the Manning-Strickler resistance relation: (44), (45), and (46).

Figure 11. Predicted versus reported bankfull discharge for the Maryland, Britain II, and ColoSmall
data sets.

F04005 PARKER ET AL.: QUASI-UNIVERSAL BANKFULL RELATIONS

15 of 21

F04005



The fraction of resistance 8f due to form drag at bankfull
flow is then given by the relation

8f ¼
Cf � Cfs

Cf

ð50Þ

where Cf is evaluated from (49) and Cfs is evaluated from
(47) and the baseline values for ar and nr.
[58] The above relations allow for a specification of 8f

as a function of Hbf/Ds50 upon specification of the ratio
Ds90/Ds50. This parameter is a function of, among other
things, sediment supply. Mueller et al. [2005] report values
of both Ds50 and Ds90 for 32 gravel bed reaches in Idaho
extracted from the compendium of King et al. [2004]. Many
of the stream reaches in this set overlap with those in the

Idaho data of Parker et al. [2003] used as baseline data here.
The values of Ds90/Ds50 in the data set of Mueller et al.
[2005] ranges from a low value of 1.69 to a high value of
13.8, with a median value of 2.99. With this in mind the
value Ds90/Ds50 = 3 is used as an example. The resulting
prediction for form drag is shown in Figure 13. The fraction
of resistance that is form drag is predicted to decrease from
0.57 to 0.21 as Hbf/Ds50 increases from 4 to 100, a range that
captures the great majority of the reaches studied here. A
refinement of the broad brush analysis presented above
would involve removing this form drag in the calculation
of gravel transport.
[59] Equation (38) indicates that the Shields number at

bankfull flow tbf* is a weak function of dimensionless
discharge Q̂ and nothing else.Mueller et al. [2005], however,

Figure 13. Estimated fraction 8f of the resistance coefficient that is form drag versus the ratio Hbf/Ds50,
based on the assumption that Ds90/Ds50 is equal to 3.

Figure 14. Plot of bankfull Shields number tbf* versus bed slope S for the baseline data set. Also
included is relation (51) [Mueller et al., 2005] and the linear regression relation (52) obtained from the
baseline data set.
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have shown a tendency for tbf* to increase with bed slope S as
well. They applied linear regression to their data set to obtain
the trend

tbf* ¼ 1:91 S þ 0:037 ð51Þ

A plot of tbf* versus S using the four baseline data sets of
this paper is shown in Figure 14. While the scatter is
considerable, the tendency for tbf* to increase with
increasing bed slope S is clear. A linear regression applied
to the same baseline data results in the relation

tbf* ¼ 2:00 S þ 0:038 ð52Þ

with a value r2 associated with least squares regression of
0.165. As noted above, most of the stream reaches in the
data set used by Mueller et al. [2005] overlap with those in
the Idaho baseline data set used above. On the other hand,
some 68 percent of the reaches in the baseline set (Alberta,
Britain I and ColoRiver) do not overlap with those used by
Mueller et al. [2005]. The good correspondence between
(51) and (52) in Figure 14 thus suggests that the trend is
real.
[60] Mueller et al. [2005] have speculated on the reasons

why tbf* tends to increases with increasing bed slope. One
contributor to this effect might be form drag. Figure 13
suggests that the fraction of resistance that is form drag
increases with decreasing values of Hbf/Ds50. Figure 15
illustrates that for the baseline data used here Hbf/Ds50

correlates negatively with bed slope S. The implication
is that form drag increases with increasing slope. If the
bankfull Shields number associated with skin friction alone
remains insensitive to slope, the total bankfull Shields
number (including skin friction and form drag) should
increase with increasing slope.

10. Discussion

[61] It is the dimensionless formulation used here that
allows backing out the physics behind the relations for

hydraulic geometry. This underlying physics in turn allows
the study of, for instance, the dependence of hydraulic
geometry on sediment supply or a measure of bank strength
Such information cannot be easily extracted from dimen-
sionally inhomogeneous equations obtained by means
of regression applied directly to parameters of differing
dimensions.
[62] Equation (37) indicates that the gravel transport rate

at bankfull flow Qb,bf increases with bankfull discharge Qbf

to about the half power.Mueller and Pitlick [2005], however,
have estimated a linear relation between annual gravel yield
and bankfull flow for the Halfmoon Creek basin, a head-
water catchment in Colorado. The reason for the discrep-
ancy is not known at this time. It may be, however, that a
decrease in the ratio of gravel yield to bankfull discharge
would be realized if the analysis of Mueller and Pitlick
[2005] were carried farther downstream into regions of
lower bed slope. The discrepancy highlights the fact that
the relations derived here apply as overall averages, and
thus may be at variance with site-specific data.
[63] It should be emphasized that the regression relations

proposed here should not be applied outside their range of
applicability. For example, Montgomery and Buffington
[1997] indicate that a step-pool topography may be
expected for slopes S in excess of 0.03. The highest slope
in either the baseline data set or the data set used to test the
regression relations is 0.031. The present analysis does not
apply to step-pool topography.
[64] The present broad brush theory accounts for neither

armoring nor downstream fining, both of which are known
to be important aspects of gravel bed streams. The theory
could be extended to include these elements. The resulting
formulation would not allow solution in closed form, and in
particular in terms of power laws. It would likely, however,
have improved predictive capacity.
[65] The approach to the physics underlying relations for

hydraulic geometry of gravel bed rivers offered here stands
in contrast to extremal formulations offered by, e.g., Chang
[1980], Yang et al. [1981], Huang et al. [2002, 2004], Eaton
and Millar [2004], and Millar [2005]. It has been known for

Figure 15. Plot of S versus Hbf/Ds50 for the baseline data set.
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some time that specification of channel-based relations for
flow resistance, gravel transport and channel form alone are
insufficient to derive both the coefficients and exponents
governing hydraulic geometry [e.g., Parker, 1979]. More
specifically, one more constraint is required. One way to
obtain this constraint is to apply an extremal condition that
applies to flow and/or sediment transport conditions at the
cross section itself. It has been variously proposed that
channels adjust their cross sections to (1) minimize vari-
ance, (2) minimize unit stream power, (3) minimize total
stream power, (4) maximize the friction coefficient, (5) max-
imize the sediment transport rate or efficiency and (6) min-
imize the Froude number. Surveys of these proposed
constraints are given by Soar and Thorne [2001] and Millar
[2005].
[66] Such approaches have met with some success in

explaining hydraulic geometry [Huang et al., 2002; Millar,
2005]. They nevertheless suffer from the drawback that the
extremal condition in question must be accepted a priori.
Here we offer a complete (albeit broad brush) formulation
for the problem of hydraulic geometry that neither invokes
nor requires any extremal condition. Reasonable, testable
and dimensionally consistent relations for (1) hydraulic
resistance, (2) gravel transport, (3) the threshold of motion
and (4) channel-forming condition combined with a gravel
‘‘yield’’ relation of the form of (37) result in precisely the
observed dimensionally consistent relations for hydraulic
geometry obtained from the baseline data set.
[67] The difference between the two approaches is

not trivial. Existing extremal formulations seek the extra
condition by imposing it at a given cross section. In the
present approach the extra constraint is a property of the
drainage basin upstream of the cross section, i.e., the gravel
‘‘yield’’ relation.
[68] The actual long-term gravel ‘‘yield’’ relation is likely

to be different from basin to basin depending upon, e.g.,
tectonic setting. The fact that (37) combined with the four
other constraints mentioned above is consistent with the
observed quasi-universal relations for hydraulic geometry
suggests, however, a strong element of self-similarity in
catchment organization.

11. Conclusions

[69] A baseline data set consisting of stream reaches from
Alberta, Canada, Idaho, USA, Britain and the Colorado
River, Colorado, USA is used to determine dimensionless
bankfull hydraulic relations for alluvial, single-thread gravel
bed streams with definable channels and floodplains. These
dimensionless relations show a considerable degree of
universality. Application of the regression relations to
three other data sets, one from Maryland, USA, one from
Colorado, USA and one from Britain, confirms this
tendency toward universality. The relations are, however,
only quasi-universal in that some systematic deviation from
universality can be detected.
[70] The regression relations are used to back calculate

the coefficients and exponents of a set of physical relations
governing bankfull hydraulic geometry. This back calcula-
tion results in (1) a Manning-Strickler relation for channel
resistance, (2) a relation in which the critical Shields
number for the onset of gravel motion varies weakly with

dimensionless flow discharge and (3) a relation for ‘‘gravel
yield’’ which relates the dimensionless gravel transport
rate at bankfull flow to dimensionless bankfull discharge.
Within the framework of the analysis the relations for
bankfull hydraulic geometry and the underlying physical
relations are completely equivalent to each other. In this way
a solution to the basis for the relations for hydraulic geometry
is obtained without invoking an extremal hypothesis.
[71] The underlying physical relations allow for general-

ization of the coefficients in the hydraulic relations in such a
way that the effects of varying ‘‘bank strength,’’ channel
resistance and gravel supply on hydraulic geometry can be
estimated. The Manning-Strickler resistance relation back
calculated from the data provides a means for estimating
bankfull discharge from measured values of bankfull depth,
bankfull width, down-channel bed slope and surface median
size. The resistance relation performs well against both the
baseline data set and the data sets from Colorado, Maryland
and Britain that were not used to determine the relation.
[72] The analysis allows an estimation of the effect of

form drag in gravel bed streams at bankfull flow. This
estimation suggests that form drag becomes progressively
more important as the ratio of bankfull depth to surface
median size decreases.
[73] Finally, the analysis suggests that the piece of infor-

mation missing from previous analyses to close the formu-
lation for bankfull hydraulic geometry is not some kind of
extremal constraint applied to a cross section, but rather a
relation that expresses how a catchment organizes itself to
deliver gravel downstream, i.e., a ‘‘gravel yield’’ relation.

Appendix A: Dimensionless Variables and
Spurious Correlation

[74] The parameters used in the analysis given above are
not the dimensioned parameters that are measured in the
field, but rather dimensionless groupings of these parame-
ters. For example, rather than searching for a relation
between bankfull width Bbf and bankfull discharge Qbf a
relation is sought between ~B and ~Q, i.e.,

~B ¼ f̂ ~B Q̂
� �

ðA1Þ

where

~B ¼ Bbf g
1=5

Q
2=5
bf

ðA2aÞ

Q̂ ¼ Qbfffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50

ðA2bÞ

In so far as the parameter Qbf appears in both the dependent
and the independent parameter, any correlation between the
two is open to the criticism that it might be spurious
[Benson, 1965].
[75] Such criticism can be misplaced in the case of

dimensionless parameters. When formulating a problem in
terms of dimensionless groupings, it is often inevitable that
the same dimensioned parameter appears on both sides of
the equation. Consider the case of the resistance relation for
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steady, laminar flow in a round pipe. The boundary shear
stress tb at the pipe wall depends upon fluid density r, fluid
kinematic viscosity n, cross-sectionally averaged flow
velocity U and pipe diameter D. Simple dimensional
analysis applied to a list of five parameters (tb, r, n, U,
D) containing three dimensions (length L, time T and mass
M) indicates that any relation between the five dimensioned
parameters can be reduced to one involving exactly two
dimensionless parameters [e.g., Kundu and Cohen, 2002].
[76] It is impossible to construct two dimensionless

parameters from the stated list without at least one dimen-
sioned parameter appearing in both. A clear case in point
involves the D’arcy-Weisbach friction coefficient f and the
Reynolds number Re:

f ¼ tb
1

8
rU 2

ðA3aÞ

Re ¼ UD

n
ðA3bÞ

Note that the flow velocity U appears in both parameters.
Now let us assume that f and Re were determined from
measured values of tb, r, n, U and D, all of which are
subject to measurement error. A regression between f and
Re in the form of a power relation would yield the form

f ¼ aRen ðA4Þ

where a and b would be determined from the regression
analysis.
[77] According to Benson [1965], the power correlation

between f and Re of (A4) is subject to spurious correlation
and thus should be discarded. Yet an exact solution of the
Navier-Stokes equations yields the form

f ¼ 64

Re
ðA5Þ

[e.g., Potter and Wiggert, 2002], i.e., a = 64 and n = �1.

[ 78] If we accept for a moment that f cannot be regressed
against Re because of the possibility of spurious correlation,
then what are the alternatives? One possibility is to regress
tb against some combination of the other four parameters
which has the same dimensions, i.e., (rnU/D) in the present
case. Thus the power relation sought would be

tb ¼ a1
rnU
D

� �n1
ðA6Þ

The correct values of a1 and n1 corresponding to (A5) are
a1 = 8 and n1 = 1.
[79] Any error at all in the measured parameters all but

guarantees that the exponent n1 in (A6) differs from 1. A
value of n1 differing even slightly from 1 in (A6) in turn
forces the value of a1 to have dimensions that vary with the
value of n1. For example, if the value of n1 determined from
regression were found to be 1.06 rather than the exact value
of unity, then the dimensions of a1 that are required to preserve
dimensional homogeneity in (A6) are M�0.06L0.06T0.12. Each
experimental data set is likely to result in somewhat different
dimensions for a1. Such error-dependent dimensions attached
to a1 imply that the method has not adequately captured the
underlying physics.
[80] The form (A4) does not have this problem. The

values of a and n determined by regression may not be
precisely equal to the theoretical values of 64 and �1,
respectively, but they nevertheless remain dimensionless,
and thus capture the underlying correlation between two
dimens ionless parameters, f and Re, e mbodied in the
Navier-Stokes equations.

Appendix B: Ordinary Least Squares Regression
and Reduced Major Axis Regression

[81] Consider a set of measured parameters (x, y). One
way to determine a relation correlating y (dependent vari-
able) to x (independent variable) is by means of ordinary
least squares (OLS) regression. This method is particularly

Figure B1. Plot of ~H versus Q̂ using the baseline data set. Also shown is the power relation obtained
with ordinary least squares (OLS) regression, as well as the corresponding one obtained with reduced
major axis (RMA) regression.
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appropriate when y is subject to measurement errors but x is
not. When both y and x are subject to measurement errors,
reduced major axis (RMA) regression is often a better
alternative [Mark and Church, 1977]. This is because the
regression line obtained from RMA tends to fall between
the line obtained by regressing y against x using OLS and
the line obtained by regressing x against y using OLS.
[82] All of the parameters used in the present analysis are

subject to measurement error. With this in mind, it might be
thought that RMA is preferable to OLS. This turns out not
to be the case. In particular, when y is sufficiently poorly

correlated to x to indicate a relation of the form y � x0,
RMA tries to split the difference between this relation and
the relation x � y1, so yielding erroneous results.
[83] Specifically this case arises in the regression of ~H

against Q̂. As reported above, the OLS regression using the
baseline data set is

~H ¼ 0:382 Q̂
�0:0004 ðB1Þ

The corresponding RMA regression is

~H ¼ 0:122 Q̂
0:113 ðB2Þ

A perusal of Figure B1 should convince the reader that the
result obtained from OLS is the more appropriate one. For
the sake of consistency OLS has been used throughout this
paper.

Notation

Bbf bankfull width.
B̂ = Bbf/Ds50.
~B = g1/5Bbf/Qbf

2/5.
Cf resistance coefficient.
Cfs coefficient of resistance due to skin friction.

Ds50 bed surface size such that 50% are finer.
Ds90 bed surface size such that 90% are finer.

g gravitational acceleration.
Hbf bankfull depth.
Ĥ = Hbf/Ds50.
~H = g1/5Bbf/Qbf

2/5.
ks bed roughness height.
nB exponent in dimensional hydraulic relation (1a) or

dimensionless hydraulic relation (8a).
nH exponent in dimensional hydraulic relation (1b)

or dimensionless hydraulic relation (8b).
nr exponent in (20a).
nS exponent in dimensional hydraulic relation (1c) or

dimensionless hydraulic relation (8c).
ny exponent in (26a).
nt exponent in (24).
Ubf mean flow velocity at bankfull flow.
u*,bf shear velocity at bankfull flow.
Qbf bankfull discharge.

Q̂ = Qbf /(
ffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50).
Qb,bf volume bed load transport rate at bankfull flow.

Q̂b = Qb,bf /(
ffiffiffiffiffiffiffiffiffiffiffi
gDs50

p
D2

s50).
Q2 flood discharge with a two-year recurrence

interval.

qbf* dimensionless Einstein number characterizing
gravel transport rate at bankfull flow, defined in
(18b).

R = (rs � r)/r; submerged specific gravity of
sediment.

r ratio between bankfull Shields number and
critical Shields number, defined in (22).

S channel bed slope.
(X)pred predicted value of any parameter X.
(X)rep reported value of any parameter X.

aB dimensionless coefficient in (8a).
aG dimensionless coefficient in (21).
aH dimensionless coefficient in (8b).
ar dimensionless coefficient in (20a).
aS dimensionless coefficient in (8c).
ay dimensionless coefficient in (26a).
at dimensionless coefficient in (24).
8f fraction of resistance that is form drag, defined in

(50).
tb,bf bed shear stress at bankfull flow.
tbf* dimensionless Shields number at bankfull flow,

defined in (18a).
tc* dimensionless Shields number at the threshold of

motion.
rs material density of sediment.
r density of water.
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