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10.05.1 Introduction

One of the most precise ways to investigate the subsurface

structure of a planet is through the analysis of seismic waves.

While such endeavors have proved to be remarkably successful

for Earth, the emplacement of a geophysical network that

includes seismometers on a terrestrial body such as Mercury,

Venus, Mars, or the Moon is both costly and technologically

challenging (see Chapter 10.03). Fortunately, alternative
atise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-538
means exist to probe the interior structure of the terrestrial

planets from orbit. One such method, reviewed in Chapter

10.04, is through analyses of a planet’s time-variable rotation.

By the measurement of precessional and tidal signals, the

moment of inertia factor and k2 Love number can be con-

strained, from which constraints on the density and viscosity

profile can be obtained. The magnetic induction response of a

planet to time-variable magnetic fields can be used to deter-

mine how the body’s electrical conductivity (and hence
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composition) varies with depth. Finally, because the gravita-

tional field of a planet is sensitive to its internal density struc-

ture, another powerful method that can be used to probe the

subsurface, and which is the subject of this review, is the joint

analysis of gravitational and topographic data.

The past two decades have witnessed dramatic advance-

ments in our understanding and knowledge of the gravita-

tional fields and topography of the terrestrial planets. These

advances are intimately related to the acquisition of radio

tracking data from orbiting spacecraft, measurements of the

range and range rate between co-orbiting satellites, measure-

ments of gravitational gradients from orbit, the collection of

data from orbiting altimeters, and the construction of terrain

models from stereo imagery. As examples, from data collected

by NASA’s Lunar Reconnaissance Orbiter (LRO; Vondrak et al.,

2010) and Gravity Recovery and Interior Laboratory (GRAIL)

(Zuber et al., 2013a) missions, respectively, launched in 2009

and 2011, the gravity and topography of the Moon are now

known better globally than any other planetary object, includ-

ing Earth. The topography of Venus was mapped by the tech-

nique of radar altimetry during the Magellan mission (placed

in orbit in 1990; Saunders et al., 1990), and radio tracking data

acquired during this mission has led to the construction of a

global gravity model. From the laser altimeter onboard the

Mars Global Surveyor (MGS) mission (placed in orbit in

1997; Smith et al., 2001a), the topography of Mars has been

mapped to high resolution, and radio tracking of this and

subsequent spacecraft has allowed for continued improvement

to the Martian gravity field. In a similar manner, radio tracking

and laser altimetry are being used by the MESSENGER space-

craft that is currently in orbit about Mercury (Solomon et al.,

2001). Finally, the topography and gravitational field of Earth

are continually being refined, most notably by a series of recent

and ongoing missions such as GRACE (Gravity Recovery and

Climate Experiment; Tapley et al., 2005) and GOCE (Gravity

Field and Steady-State Ocean Circulation Explorer; Drinkwater

et al., 2003).

From a geophysical and comparative planetology perspec-

tive, the motivation for obtaining high-resolution gravitational

and topographic data is to place constraints on the formation,

interior structure, and geologic evolution of a planet. The

magnitude and direction of the gravitational acceleration exte-

rior to a planet are completely determined by its internal

distribution of mass, a result of Newton’s law of gravitation.

When combined with topographic data and reasonable geo-

logic assumptions, it becomes possible to invert for important

geophysical parameters, such as crustal thickness, elastic thick-

ness, and crustal andmantle densities. These model parameters

can then be used to address questions concerning planetary

differentiation, crust formation, thermal evolution, and mag-

matic processes. Since the spatial resolving power of gravita-

tional measurements decreases with increasing distance from

the object, these investigations are generally restricted to the

crust and upper mantle.

Very few research articles have been written that review the

gravitational fields and topography of the terrestrial planets

from a comparative planetology perspective: useful summaries

can be found in Phillips and Lambeck (1980), Balmino

(1993), Bills and Lemoine (1995), and Rummel (2005). The

purpose of this chapter is both to review the current state of
knowledge of the gravitational fields and topography of the

terrestrial planets and to review the tools that are used to

describe and analyze these data. While gravitational and topo-

graphic datasets can each be used independently to make

inferences about the interior structure of a planet, such results

are often based upon hypotheses that are not easily testable or

models that are highly underconstrained. Thus, although

regional topographic models have been constructed for some

moons and asteroids (such as Phobos (Wählisch et al., 2010),

433 Eros (Gaskell et al., 2008; Zuber et al., 2000a), Itokawa

(Abe et al., 2006; Gaskell et al., 2008), Vesta ( Jaumann et al.,

2012), Ganymede (Giese et al., 1998), Europa (Nimmo et al.,

2003a,b; Nimmo et al., 2007), Iapetus (Giese et al., 2008),

Mimas (Dermott and Thomas, 1988), Enceladus (Thomas

et al., 2007), Tethys (Thomas et al., 2007), Dione (Thomas

et al., 2007), Rhea (Thomas et al., 2007), and many of the

irregularly shaped satellites of Saturn (Thomas, 2010)) and the

longest wavelength gravitational fields and topography have

been constrained for others (such as Io (Anderson et al., 2001a;

Thomas et al., 1998), Europa (Anderson et al., 1998),

Ganymede (Anderson et al., 1996b; Palguta et al., 2006), Cal-

listo (Anderson et al., 2001b), Rhea (Anderson and Schubert,

2010), Titan (Iess et al., 2010; Lorenz et al., 2013), and Vesta

(Konopliv et al., 2013a)), this chapter will focus on those

planetary bodies for which the gravity and topography are

both characterized to high resolution, namely, Earth, Venus,

Mars, Mercury, and the Moon.

The outline of this chapter is as follows. First, in

Section 10.05.2, a general review of the mathematical formal-

ism that is used in describing the properties of gravitational

fields and topography is given. In Section 10.05.3, the basic

properties of the gravitational fields and topography of Earth,

Venus, Mars, Mercury, and the Moon are characterized. Fol-

lowing this, Sections 10.05.4–10.05.7 discuss the relationship

between gravity and topography and how the two datasets can

be used to invert for geophysical parameters. These methods

include crustal thickness modeling, the analysis of geoid/

topography ratios (GTRs), modeling of the spectral admittance

and correlation functions, and localized spectral analysis and

wavelet techniques. Section 10.05.8 summarizes the major

results that have been obtained for these planetary bodies,

and Section 10.05.9 concludes by discussing future develop-

ments that can be expected in this domain.
10.05.2 Mathematical Preliminaries

This section reviews the mathematical background that is

required to understand how gravitational fields and topogra-

phy are characterized and manipulated. As most analysis tech-

niques make use of spherical harmonics, the first subsection

defines these functions and introduces certain concepts such as

the power spectrum. The following subsection gives definitions

that are specific to the gravitational potential, gravitational

field, and geoid. For further details, the reader is referred to

several key books and articles such as Chapter 3.02, Jeffreys

(1976), Kaula (1967), Kaula (2000), Heiskanen and Moritz

(1967), Lambeck (1988), and Hofmann-Wellenhof and

Moritz (2006).
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10.05.2.1 Spherical Harmonics

Spherical harmonics are the natural set of orthogonal basis

functions on the surface of the sphere. As such, any real

square-integrable function can be expressed as a linear combi-

nation of these as

f y, fð Þ¼
X1
l¼0

Xl
m¼�l

f lmYlm y, fð Þ [1]

where Ylm is the spherical harmonic function of degree l and order

m, flm is the corresponding expansion coefficient, and y and f
represent the position on the sphere in terms of planetocentric

colatitude and longitude, respectively. Alternative representations

include the use of ellipsoidal harmonics (e.g., Garmier and

Barriot, 2001; Jekeli, 1988) when the function is known globally

and Slepian functions (Simons et al., 2006) or spherical cap

harmonics (e.g., Haines, 1985; Hwang and Chen, 1997;

Thébault et al., 2006, 2004) when the function is known only

regionally. This chapter will use exclusively planetocentric coor-

dinates, where colatitude is measured with respect to the polar

axis, but the reader should be aware that many datasets for Earth

make use of planetographic coordinates. Planetographic latitude

differs fromplanetocentric latitude in that it is defined as the angle

between the normal to an ellipsoid and the equatorial plane.

In geodesic and gravitational applications, the real spherical

harmonics are defined as

Ylm y, fð Þ¼
Plm cosyð Þcosmf if m� 0

Pljmj cosyð Þsin ��m��f if m< 0

(
[2]

where the normalized associated Legendre functions are

given by

Plm mð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�d0mð Þ 2lþ1ð Þ l�mð Þ!

lþmð Þ!

s
Plm mð Þ [3]

and where dij is the Kronecker delta function. The unnorma-

lized Legendre functions in the aforementioned equation are

defined in relation to the Legendre polynomials by

Plm mð Þ¼ 1�m2
� �m=2 dm

dmm
Pl mð Þ [4]

Pl mð Þ¼ 1

2ll!

dl

dml
m2�1
� �l

[5]

The normalized associated Legendre functions are orthog-

onal for a given value of m according toð1
�1

Plm mð ÞPl0m mð Þdm¼ 2 2�d0mð Þdll0 [6]

and the spherical harmonics are orthogonal over both l and m

with the normalizationð
O
Ylm y, fð ÞYl0m0 y, fð ÞdO¼ 4pdll0dmm0 [7]

where dO¼ sin y dy d’. Multiplying eqn [1] by Yl0m0 and

integrating over all space, the spherical harmonic coefficients

of the function f can be obtained from the integral

f lm ¼ 1

4p

ð
O
f y, fð ÞYlm y, fð ÞdO [8]
A useful visualization property of the spherical harmonic

functions is that they possess 2|m| zero crossings in the longi-

tudinal direction and l� |m| zero crossings in the latitudinal

direction. In addition, for a given spherical harmonic degree l,

the equivalent Cartesian wavelength is l� 2pR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ1ð Þp

,

where R is the mean planetary radius, a result known as the

Jeans relation. It should be noted that those coefficients and

spherical harmonics wherem¼0 are referred to as zonal, those

with l¼ |m| are sectoral, and the rest are tesseral. Furthermore,

the zonal coefficients Cl0 are often written as �Jl.

Using the orthogonality properties of the spherical har-

monic functions, it is straightforward to verify that the total

power of a function f is related to its spectral coefficients by a

generalization of Parseval’s theorem:

1

4p

ð
O
f 2 y,fð ÞdO¼

X1
l¼0

Sf f lð Þ [9]

where

Sff lð Þ¼
Xl
m¼�l

f 2lm [10]

is referred to as the power spectrum of the function. (The term

‘power’ is here used in the sense of the signal processing

literature; namely, the square of the function divided by the

area that it spans.) It can be shown that Sff is unmodified by a

rotation of the coordinate system. Similarly, the cross power of

two functions f and g is given by

1

4p

ð
O
f y, fð Þg y,fð ÞdO¼

X1
l¼0

Sfg lð Þ [11]

where

Sfg lð Þ¼
Xl
m¼�l

f lmglm [12]

is defined as the cross power spectrum. If the functions f and g

have a zero mean (i.e., their degree-0 terms are equal to zero),

then Sff(l) and Sfg(l) represent the contributions to the variance

and covariance, respectively, for degree l. Some authors plot

routinely the power per degree, S/(2lþ1), or the root-mean-

square (rms) amplitude of the spherical harmonic coefficients,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S= 2lþ1ð Þp

.

One source of confusion with spherical harmonic analyses

is that not all authors use the same definitions for the spherical

harmonic and Legendre functions. In contrast to the ‘geodesy’

or ‘4p’ normalization of eqn [7] (cf. Kaula, 2000), the seismol-

ogy (e.g., Dahlen and Tromp, 1998) and physics (e.g.,

Varshalovich et al., 1988) communities often use orthonormal

harmonics, whose squared integral is equal to unity. The geo-

magnetic community employs Schmidt seminormalized har-

monics whose squared integral is 4p/(2lþ1) (e.g., Blakely,

1995). A more subtle problem is related to a phase factor of

(�1)m (the Condon–Shortley phase) that is sometimes applied

to either eqn [3] or [4]. Whereas the spherical harmonics used

by the geodesy and geomagnetic communities both exclude

this phase factor, those in the physics and seismology commu-

nities often include it. To convert the spherical harmonic coef-

ficients from one normalization to another (here labeled by
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superscripts 1 and 2), it is necessary only to recognize that the

product of the spherical harmonic coefficient and function is

independent of the normalization:

f
1ð Þ
lm Y

1ð Þ
lm ¼ f

2ð Þ
lm Y

2ð Þ
lm [13]

In order to obtain the spherical harmonic coefficients flm of

a function f, it is necessary to be able to calculate accurately

both the normalized Legendre functions of eqn [3] and the

integral of eqn [8]. Methods for efficient calculation of the

normalized associated Legendre functions depend upon

the use of well-known three-term recursion formulas. If start-

ing values used in the recursion are appropriately scaled, as is

summarized by Holmes and Featherstone (2002), these can be

computed to high accuracy up to a maximum spherical har-

monic degree of about 2700. To obtain a similar accuracy at

higher degrees would require the use of an alternative scaling

algorithm (e.g., Fukushima, 2011; Jekeli et al., 2007).

The integrals of eqn [8] are most easily performed if the

function f is known on a set of evenly spaced grid points in

longitude. Numerical methods for calculating this integral

involve Fourier transforming each latitudinal band and then

integrating over latitude for each l and m (e.g., Sneeuw, 1994).

If the function is sampled on an n�n grid, with n even, and if

the function is known to be bandlimited to a maximum degree

n/2�1, then the spherical harmonic transform can be com-

puted exactly (see Driscoll and Healy, 1994). Alternatively, the

integral over latitude can be performed using Gauss–Legendre

quadrature (e.g., Press et al., 1992, pp. 140–149). While the

integrand of eqn [8] is not in general a terminating polyno-

mial, if the function is bandlimited to a maximum degree n,

nþ1 points in latitude are sufficient to calculate accurately the

spherical harmonic expansion coefficients. Publicly available

software packages, such as SHTOOLS developed by the author,

are readily available for performing the calculations in this

manuscript (see Table 1 for a list of Internet resources).
10.05.2.2 Gravity, Potential, and Geoid

The gravitational acceleration g at position r that results from a

mass dm at position r0 is given by Newton’s law of gravitation:
Table 1 Internet resources

Resource

SHTOOLS: Fortran 95 spherical harmonics software archive
ETOPO1: Earth 1 arc minute topography model
GTOPO30: Earth 30 arc second topography model
GLOBE: Earth 30 arc second global topography
SRTM: Earth topography model
STRM30_PLUS: Earth 30 arc second topography and bathymetry model
Earth2012: Spherical harmonic models of the Earth’s topography and potenti
WGS84 ellipsoid and ‘WGS84 EGM96 geoid’
ICGEM: International Center for Global Earth Models (collection of gravity mo
Planetary Data System (PDS) Geosciences node
Spherical harmonic models of planetary topography
GTDR3.2: Venusian topography
Generic Mapping Tools
g rð Þ¼�Gdm
r� r0��r� r0

��3 [14]

Given that the curl of g is zero, this vector force field is

conservative, and the gravitational acceleration can be

expressed as the gradient of a scalar potential U:

g rð Þ¼∇U rð Þ [15]

where the gradient operator in spherical coordinates is

∇¼ r̂
@

@r
þ ŷ

1

r

@

@y
þ f̂

1

rsiny
@

@f
[16]

The gravitational potential can be calculated at an arbitrary

point by a simple integral over the mass distribution

U rð Þ¼
ð
V

Gr r0ð Þ
r� r0j jdV

0 [17]

where r is the mass density and V signifies that space occupied

by the body. Whereas the sign convention of eqns [15] and

[17] are consistent with that used in the geodesy literature, it

should be noted that other disciplines, such as physics, place a

negative sign in front of each of these equations.

Exterior to the mass distribution V, it can be shown that

the potential satisfies Laplace’s equation (e.g., Kaula, 2000,

chap. 1):

∇2U rð Þ¼ 0 [18]

By using this relationship and the method of separation of

variables, the potential U exterior to V can be expressed alter-

natively as a sum of spherical harmonic functions:

U rð Þ¼GM

r

X1
l¼0

Xl
m¼�l

R0

r

� �l

ClmYlm y, fð Þ [19]

Here, the Clms represent the spherical harmonic coefficients

of the gravitational potential at a reference radius R0, G is the

gravitational constant, and M is the total mass of the object. In

practice, the infinite sum is truncated beyond a maximum

degree L that is justified by the data resolution. The coefficients

Clm of eqn [19] are related uniquely to the internal mass

distribution of the body, and methods for calculating these
Internet address

http://shtools.ipgp.fr/
http://www.ngdc.noaa.gov/mgg/global/global.html
https://lta.cr.usgs.gov/GTOPO30
http://www.ngdc.noaa.gov/mgg/topo/globe.html
http://dds.cr.usgs.gov/srtm/
http://topex.ucsd.edu/WWW_html/srtm30_plus.html

al http://geodesy.curtin.edu.au/research/models/Earth2012/
http://earth-info.nga.mil/GandG/wgs84/

dels) http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
http://geo.pds.nasa.gov/
http://www.ipgp.fr/�wieczor/SH/SH.html
ftp://voir.mit.edu/pub/mg3003/
http://gmt.soest.hawaii.edu/

http://shtools.ipgp.fr/
http://www.ngdc.noaa.gov/mgg/global/global.html
https://lta.cr.usgs.gov/GTOPO30
http://www.ngdc.noaa.gov/mgg/topo/globe.html
http://dds.cr.usgs.gov/srtm/
http://topex.ucsd.edu/WWW_html/srtm30_plus.html
http://geodesy.curtin.edu.au/research/models/Earth2012/
http://earth-info.nga.mil/GandG/wgs84/
http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
http://geo.pds.nasa.gov/
http://www.ipgp.fr/~wieczor/SH/SH.html
http://www.ipgp.fr/~wieczor/SH/SH.html
ftp://voir.mit.edu/pub/mg3003/
http://gmt.soest.hawaii.edu/
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are deferred until Section 10.05.4. Here, it is only noted that

the degree-0 coefficient C00 is equal to unity and that if the

coordinate system has been chosen such that it coincides with

the center of mass of the object, the degree-1 terms (C10, C11,

and C1,�1) are identically zero. The negative order coefficients

Cl,�m are often referred to as Slm.

As a result of the factor (R0/r)
l that multiplies each term in

eqn [19], the high-frequency components in this sum (i.e.,

those with large l) will be attenuated when the observation

radius r is greater than the reference radius R0. In contrast, if the

coefficients were determined at the altitude of an orbiting

satellite, and if this equation were used to determine the

potential field on the surface of the planet, then the high-

frequency terms would instead be relatively amplified. Since

the spherical harmonic coefficients always possess some uncer-

tainty, which generally increases with increasing l, the process

of downward continuing a potential field is not stable and

must generally be compensated by some form of filtering

(e.g., Fedi and Florio, 2002; Phipps Morgan and Blackman,

1993; Wieczorek and Phillips, 1998).

If the body under consideration is rotating, an additional

nongravitational force must be taken into account when one is

on the surface. In the reference frame of the rotating body, this

can be accounted for by adding to eqn [19] a pseudopotential

term that is a result of the centrifugal force. This rotational

potential, as well as its spherical harmonic expansion, is

given by

Urot ¼o2r2sin2y
2

¼o2r2
1

3
Y00� 1

3
ffiffiffi
5

p Y20

� �
[20]

where o is the angular velocity of the rotating object. For some

applications, especially concerning Earth and Moon, it is nec-

essary to include the tidal potential of the satellite or parent

body when calculating the potential (see Dermott, 1979;

Zharkov et al., 1985). For a synchronously locked satellite on

a circular orbit, the combined tidal and rotational potential in

the rotating frame is given approximately by

Utideþrot ’o2r2
1

3
Y00� 5

6
ffiffiffi
5

p Y20þ1

4

ffiffiffiffiffiffi
12

5

r
Y22

 !
[21]

For eccentric and inclined orbits, the reader is referred to

Murray and Dermott (2008).

An important quantity in both geodesy and geophysics is

the geoid, which is defined to be a surface that possesses a

specific value of the potential. (Although one could come up

with imaginative names for equipotential surfaces on Mercury,

Venus, Eros, Io, and Titan, among others, the term geoid will

here be used for all.) As there are no tangential forces on an

equipotential surface (see eqn [15]), a static fluid would natu-

rally conform to the geoid. The oceans of Earth are approxi-

mately static and are well approximated by such a surface. In

geophysics, stresses within the lithosphere are often calculated

by referencing the vertical position of a density contrast to an

equipotential surface. This is necessary when performing lith-

ospheric flexure calculations, especially when considering the

longest wavelengths.

The height N of an equipotential surface above a spherical

reference radius R can be obtained by approximating the

potential by a Taylor series
U RþNð Þ’U Rð ÞþdU Rð Þ
dr

Nþ1

2

d2U Rð Þ
d2r

N2 [22]

and setting this expression equal to a constant

U RþNð Þ¼GM

R
þo2R2

3
[23]

the value of which is here chosen to be the degree-0 term of the

potential at the reference radius R for a rotating planet. Since

this equation is quadratic in N, the geoid height can be solved

for analytically at any given position. Analytic expressions for

the partial derivatives of the potential are obtained easily in the

spectral domain from eqns [19] and [20] (see also eqn [25]). It

is noted that an analytic expression for the geoid using a third-

order expansion of eqn [22] also exists.

For some cases, it is sufficient to use only the first-order

term of eqn [22]. If the first derivative of U is approximated

by �GM/R2, then the geoid is simply given by

N’R
X1
l¼2

Xl
m¼�l

R0

R

� �l

ClmYlm� o2R4

3
ffiffiffi
5

p
GM

Y20 [24]

where the degree-1 terms have been assumed to be zero.

Although the maximum difference between the first- and

second-order methods is less than half a meter for the Moon,

Mercury, and Venus, differences of up to 26 and 42 m are

obtained for Earth andMars, respectively. The poor performance

of the first-order approximation for Earth and Mars is a result of

the large rotationally induced flattening of these two planets.

Despite the simplicity of the aforementioned method for

obtaining the height to an equipotential surface, the question

arises as to which equipotential surface should be used. For

Earth, a natural choice is the potential corresponding to mean

sea level. However, for the other planets, the choice is more

arbitrary (but often not important). As the aforementioned

equations for calculating the potential are strictly valid only

when the observation point is exterior to the body, onemanner

of picking a specific potential might be to choose that value for

which all points on the geoid are exterior to the body.

(Calculation of the potential below the surface of a planet

would require knowledge of the interior density distribution.)

Another approach that could be used would be to use themean

potential on the planet’s equator. Alternatively, the geoid could

be chosen such that it best fits, in a least squares sense, the

observed shape of the planet (Ardalan et al., 2010).

The radial component of the gravitational field is calculated

by taking the first radial derivative of eqn [19]. Ignoring the

rotational potential, and using the sign convention that gravi-

tational accelerations are positive when directed downward,

this is given by the expression

gr ¼
GM

r2

X1
l¼0

Xl
m¼�l

R0

r

� �l

lþ1ð ÞClmYlm [25]

Note that this equation differs from the potential only by

the inclusion of the additional factors 1/r and (lþ1). The

second factor gives a greater importance to the higher-degree

terms, and it is for this reason that plots of the potential and

geoid appear to be smooth when compared to components of

the gravitational field. In terrestrial applications, it is common

to calculate the gravitational field on the geoid. By inserting
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eqn [24] into eqn [25] and ignoring rotational and higher-order

terms, it can be shown that the radial component of the gravi-

tational field on the geoid can be approximated simply by

replacing the term (lþ1) in eqn [25] by (l�1). If it is necessary

to calculate the gravity field on an irregular surface, this can be

accomplished by using a Taylor series that makes use of the

known field and higher-order derivatives on a spherical inter-

face (Hirt, 2012). The standard unit for quantifying gravita-

tional perturbations is the galileo, where 1 Gal¼10�2 m s�2,

and when plotting gravitational anomalies in map form, it is

conventional to use milligals.

Finally, it will be useful to characterize the relationship

between the gravitational field and topography in the spectral

domain. For this, let us presume that the radial gravity glm and

topography hlm are related by

glm ¼Qlmhlmþ Ilm [26]

where Qlm is a linear nonisotropic transfer function and Ilm is

that portion of the gravitational signal, such as noise, that is

not predicted by the model (the topography can often be

considered noise-free). If Ilm is uncorrelated with the topogra-

phy, then it is straightforward to show that the expectation of

Sgh will be unaffected by this signal. (This can be shown by

multiplying eqn [26] by hlm, summing over all m, and taking

the expectation.) In contrast, the expectation of the gravita-

tional power spectrum will depend upon the magnitude of

Ilm. In particular, for the case where Ilm is a random variable

that is independent of the surface topography, the expectation

of the observed gravitational power spectrum is simply

Sobsgg lð Þ¼ Sgg lð ÞþSII lð Þ [27]

where Sgg is the power spectrum predicted exclusively by the

model Qlm and SII is the expectation of the power spectrum of

Ilm. Thus, gravitational measurement noise will bias the gravi-

tational power spectrum by an additive constant.

In quantifying the relationship between gravity and

topography, it is useful to work with ratios of their cross

power spectra. One quantity, referred to as the admittance, is

defined by the cross power of the two functions divided by the

power of the topography (e.g., Dorman and Lewis, 1970):

Z lð Þ¼ S hg lð Þ
S hh lð Þ [28]

This function is not biased by the presence of noise, and

when the transfer functionQlm is isotropic (i.e., independent of

m), it is an unbiased estimate of Ql. Another ratio that is

commonly used and that is dimensionless is the correlation :

g lð Þ¼ S hg lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Shh lð ÞSgg lð Þp [29]

If the coefficients hlm and glm possess a zero mean, the

aforementioned function is simply the correlation coefficient

of the two sets of harmonic coefficients for a given degree l,

which is bounded between 1 and �1. Whereas noise will not

bias the admittance function, it will bias the degree correlation

function toward lower values as a consequence of the gravita-

tional power spectrum in the denominator of this expression.

The term coherence is usually reserved for the correlation

squared, but this definition is not universally followed. Since
squaring the correlation discards information (its sign), its

use is not advocated here. It is noted that the isotropic version

of eqn [26] predicts that the spectral correlation co-

efficient should always be �1. Nevertheless, as discussed in

Section 10.05.7, nonisotropic models yield expressions that

are degree-dependent. Whereas other ratios of cross power

spectra could be constructed, only two will be independent.

Since the relationship between gravity and topography is non-

linear (see eqn [33]), in the following section, it will be useful

to plot the correlation between the observed gravity and the

gravity predicted from surface topography.
10.05.3 The Data

10.05.3.1 Earth

10.05.3.1.1 Topography
Despite the fact that the measurement of the Earth’s topogra-

phy and bathymetry has been the subject of numerous

government-supported campaigns, large portions of the Earth’s

surface, namely, the oceans, remain poorly characterized.

Indeed, from a global perspective, it can be said that the shapes

of Mars and the Moon are known better than that of the planet

we call home. Until recently, even the elevations of the aerial

portions of the continents possessed long-wavelength uncer-

tainties, a result of mosaicking numerous elevation models,

each with its own reference surface, along artificial political

boundaries. While major advances have been made in the past

decade toward generating global models, the main deficiency

is still the sparse bathymetry of the oceans.

Numerous topographic models of the Earth’s landmass

have been assembled from various sources over the past few

decades, including ETOPO1 (1 arc minute resolution; Amante

and Eakins, 2009), GLOBE (30 arc second resolution; Hastings

and Dunbar, 1999), and GTOPO30 (detailed documentation

for these and all following topography models can be found at

the appropriate web addresses listed in Table 1). Currently, the

most accurate model of the Earth’s landmass comes from radar

interferometric data collected by the Shuttle Radar Topography

Mission (SRTM). During its 10 days of operation onboard the

US space shuttle in year 2000, this mission mapped nearly

80% of the landmass between 60�N and 54�S with a horizontal

sampling of 1 arc second (�30 m) and an absolute vertical

accuracy better than about 10 m (Rabus et al., 2003; Rodrı́guez

et al., 2005). Because of the 5.6 cm wavelength of the radar,

elevations correspond to the top of the canopy when vegeta-

tion is present.

The bathymetry of the oceans has been measured from ship

surveys using echo sounding for over half a century. Unfortu-

nately, the ship tracks sometimes possess large navigational

errors, and large data gaps exist. As reviewed by Marks and

Smith (2006), many datasets exist that are based upon these

measurements, but each has its own peculiarities. In the

absence of additional ship survey data, one method that can

be used to improve the bathymetry of the oceans is by combin-

ing ship survey data with marine gravity data. As is detailed by

Smith and Sandwell (1994, 1997), marine gravitational anom-

alies (as obtained from altimeter-derived sea surface slopes) are

highly correlated with seafloor topography over a restricted

wavelength band. By combining predicted topography from
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bandpassed gravitational anomalies with the long-wavelength

bathymetry from shipboard sounding, it has been possible to

obtain near-global 2 arc second resolution estimates of sea-

floor topography. Nevertheless, it should be emphasized that

such data products are indeed estimates and that they may be

inappropriate for certain types of geophysical modeling.

Global Earth’s topography models that combine oceanic

bathymetry and landmass topography include ETOPO1 and

SRTM30_PLUS. The latter of these represents a combination of

the SRTM 30 arc second data and the Smith and Sandwell

(1997)-predicted bathymetry, with gaps filled by GTOPO30

data, among others. Using the SRTM, SRTM30_PLUS, and

ETOPO1 datasets, a suite of high-degree spherical harmonic

models has been constructed by Hirt et al. (2012) (Earth2012)

that include models of planetary shape, relief with respect to

the geoid, and rock-equivalent topography. An image of this

global topographic model is displayed in Figure 1, where the

elevations are plotted with respect to the EGM96 geoid, which

is a good approximation of mean sea level (see Internet docu-

mentation in Table 1 for precise definitions). To obtain abso-

lute radii of Earth (as is necessary for most methods that

calculate gravity from topography), it is necessary to add the

elevation of the geoid, which is referenced to the WGS84

ellipsoid, and the shape of the WGS84 ellipsoid itself. The

WGS84 ellipsoid is a good representation of the Earth’s zonal

shape and possesses a 21 km rotationally induced difference in

elevation between the equator and polar axis. A summary of

fundamental planetary constants is given in Table 2.

10.05.3.1.2 Gravity
The gravitational field of Earth has been mapped by several

techniques, including analyses of satellite radio tracking data,

ranging between co-orbiting spacecraft, measurement of gravita-

tional gradients from orbit, and terrestrial measurement cam-

paigns. Satellite altimetry of the ocean surface provides

additional constraints, as geoid slopes are proportional to the

gravity field in the spectral domain (see, among others, Hwang

and Parsons, 1996; Sandwell and Smith, 1997). The construction

of global high-resolutionmodels consists of combining the long-

wavelength information from satellite tracking data with the

short-wavelength information in the terrestrial andoceanic altim-

eter surveys. The model EGM96 (Lemoine et al., 1998) has been

the standard reference for much of the past decade, and this was

recently superseded by the model EGM2008 (Pavlis et al., 2012).

EGM2008 is complete to degree andorder 2160 andmakes use of

a global 180 degree and order GRACE-based solution, gravit-

ational anomalies over the ocean derived from satellite altimetry,

and terrestrial and airborne gravity data. The EIGEN-6c2 gravity

model (Förste et al., 2012), developed to degree and order 1949,

is largely consistent with EGM2008 and makes use of GRACE

intersatellite ranges, GOCE gravity gradients, LAGEOS satellite

laser ranging data, ocean geoid, and terrestrial data.

The analysis of data from the ongoing missions (Challeng-

ing Mini-Satellite Payload (CHAMP); launched in 2000;

Reigber et al., 2004), GRACE (launched in 2002; Tapley

et al., 2004), and GOCE (launched in 2009; Floberghagen

et al., 2011; Rummel et al., 2011) is providing highly accurate

estimates of the Earth’s long-wavelength gravity field (corre-

sponding to spherical harmonic degrees less than about 200;

Pail et al., 2011) and time variations in gravity resulting from
geologic processes. These satellites all utilize continuous satel-

lite to GPS (global positioning system) tracking data for orbit

determination. CHAMP and GOCE are single satellites, but the

primary payload of GOCE is a three-axis gravity gradiometer.

GRACE consists of two satellites on identical orbits, of which

the distance between the two is measured to high accuracy by a

microwave communication link. The analyses of data from

GRACE have been providing monthly global gravity solutions

since 2003, allowing for study of hydrogeologic, postseismic

deformation, and postglacial rebound phenomena.

The images of the total gravitational and geoid anomalies,

as determined from eqn [25] and the second-order approxima-

tion of eqns [22] and [24], are shown in Figure 1 for the model

EMG2008. The total gravitational anomaly is here defined

as the total gravitational acceleration on the rotating WGS84

ellipsoid after removal of the predicted ‘normal gravity’ of

a homogeneous ellipsoid (e.g., Hofmann-Wellenhof and

Moritz, 2006). Though this terminology is in common usage

in the geophysics community, geodesists would call this the

total gravity disturbance. (In terrestrial geodesy, the gravit-

ational anomaly is defined as the gravity on the geoid minus

the normal gravity on the reference ellipsoid, where the two

quantities are calculated at different points in space.) The

largest gravitational anomalies are seen to be correlated with

topography (such as trenches and seamounts), and the geoid

height is found to vary by about 200 m.
10.05.3.1.3 Spectral analysis
Spectral and cross-spectral properties of the shape model

Earth2012 RET and the EGM2008 potential are plotted in

Figure 2. For this shape model, the radius of the ocean floor

was increased by 1030/2670 times its depth in order to convert

the mass of the overlying sea water into ‘rock-equivalent topog-

raphy.’ As demonstrated in the left panel, the power spectrum

of the geoid is about five orders of magnitude less than that of

the topography, which is a reflection of the low amplitudes of

the geoid undulations present in Figure 1. The error spectrum

of the potential model demonstrates that the coefficients are

well determined at low degrees, with relative uncertainties

gradually increasing to 100% near degree 1800. As a result of

the �260 km altitude of GOCE and the �400–500 km alti-

tudes of GRACE and CHAMP, the contribution to the gravita-

tional field from these spacecraft is necessarily limited to

degrees less than about 250; the higher-degree terms are con-

strained almost entirely by surface measurements.

The admittance and correlation spectra between the radial

gravity and topography are plotted in the right panel of

Figure 2. Given that the relationship between gravity and

topography is nonlinear, especially at high degrees, the corre-

lation spectrum is here calculated using the spherical harmonic

coefficients of the free-air gravity and the gravity predicted

from topography. The correlation for many of the lowest

degrees is seen to be small and in some cases negative. The

correlation increases beyond degree 12 from about 0.7 to

attain a nearly constant value close to 0.9 near degree 500.

The slight decrease in correlation that is observed beyond

degree 1800 is likely a result of the sparse gravity coverage

over portions of the oceanic and continental crust. If the cor-

relation were calculated using the observed topography,
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Figure 1 (Top) Global topography and bathymetry of Earth (model Earth2012), referenced to the WGS84 EGM96 geoid, (middle) the EGM2008
total gravitational anomaly on the WGS84 ellipsoid, and (bottom) the height of the EGM2008 geoid above the WGS84 ellipsoid. All images are in a
Mollweide projection with a central meridian of 180�W longitude and are overlain by a gradient image derived from the topographic model.

160 Gravity and Topography of the Terrestrial Planets



Table 2 Gravitational and shape constants

Parameter Value Source

G 6.67384(80)�10�11 m3 kg�1 s�2 Committee on Data for Science and Technology; Mohr et al. (2012)
Earth
GM 398.6004415�1012 m3 s�2 EGM2008; Pavlis et al. (2012)
Semimajor axis 6378.137 km WGS84; National Imagery and Mapping Agency (2000)
Semiminor axis 6356.7523142 km WGS84; National Imagery and Mapping Agency (2000)
Radius of sphere of equal volume 6371.00079 km WGS84; National Imagery and Mapping Agency (2000)
o 72.921150�10�6 rad s�1 WGS84; National Imagery and Mapping Agency (2000)
Venus
GM 324.858592�1012 m3 s�2 MGNP180U; Konopliv et al. (1999)
Mean planetary radius 6051.878 km VenusTopo719; this chapter
o �299.24�10�9 rad s�1 Konopliv et al. (1999)
Mars
GM 42.8283748313�1012 m3 s�2 JGMRO_110c; Konopliv et al. (2011)
Mean planetary radius 3389.500 km MarsTopo2600; this chapter
o 70.8821807�10�6 rad s�1 Jacobson (2010)
Mercury
GM 22.031839224�1012 m3 s�2 GGMES_20v04; Smith et al. (2012)
Mean planetary radius 2439.372 km GTMES_24v01
o 1.2400172589�10�6 rad s�1 Rambaux and Bois (2004)
The Moon
GM 4.90280007�1012 m3 s�2 DE430; Williams et al. (2014)
Mean planetary radius 1737.151 km LOLA2600p; this chapter
o 2.6617073�10�6 rad s�1 Yoder (1995)
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Figure 2 Power and cross power spectra of the Earth’s radial gravity and topography. (Left) Power spectra of the topography (Earth2012 RET), geoid
(EGM2008), and geoid error. (Right) Admittance and correlation spectra of the radial gravity and topography. The correlation spectrum is calculated
using the spherical harmonic coefficients of the observed free-air gravity and gravity predicted from topography.
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instead of gravity predicted from topography, the correlation

would decrease to less than 0.5 at the highest degrees.

If the surface topography were completely uncompensated,

which should be a good approximation beyond degree 300, the

admittance would have a near-constant value of 2prG, or

42 mGal km�1 times the surface density in units of g cm�3.

The observed function is everywhere lower than this theoretical

value by about a factor of 2. The low admittances at high degrees

are a consequence of the fact that the gravity and surface topog-

raphy are not perfectly correlated on a global scale as a result of

subsurface loads (see discussion in Section 10.05.6.2).
10.05.3.2 Venus

10.05.3.2.1 Topography
The planet Venus possesses a dense atmosphere and is perpet-

ually enshrouded by opaque clouds of sulfuric acid. In order to
obtain measurements of the surface, it is necessary to make use

of electromagnetic frequencies, such as microwaves, where the

atmosphere is transparent. Surface elevations of Venus have

been measured from orbit using radar altimeters onboard the

missions Pioneer Venus Orbiter, Venera 15 and 16, and

Magellan. Of these, the Magellan spacecraft, which was in

orbit between 1990 and 1994, collected the highest resolution

measurements on a near-global scale (for a detailed descrip-

tion, see Ford and Pettengill, 1992).

As a result of the elliptical orbit of the Magellan spacecraft,

the spatial resolution of the elevation measurements varied

between 8�10 km at periapse and 19�30 km at the north

pole (Rappaport et al., 1999). Over 4 million range measure-

ments were ultimately collected, and these were used to con-

struct a 5�5 km gridded elevation model. With the exception

of a few relatively minor data gaps covering about 2.6% of the

planet’s surface area, coverage of the planet is fairly uniform.
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(If data from previous missions are used to fill the gaps, then

just less than 1% of the planet is not covered at this resolution.)

Though the spacecraft-surface rangemeasurements are estimated

to have an accuracy of less than 10 m (errors can be larger over

rough and steeply sloping terrain), uncertainties in the spacecraft

orbit at the time of initial processing were sometimes much

greater, especially during superior conjunction. The most recent

gravity model of Konopliv et al. (1999) has improved consider-

ably the spacecraft navigational errors, and these improved orbit

predictions have been used by Rappaport et al. (1999) in a

complete reprocessing of the altimetry dataset (archived as

GTDR3.2). Horizontal uncertainties in the footprint locations

are insignificant in comparison with the footprint size, and the

rms radial uncertainty is estimated to be less than 20 m.

An image of the Venusian topography (derived from the

spherical harmonic model VenusTopo719; Sec-

tion 10.05.3.2.3) is shown in Figure 3, where it is referenced

to the geoid. Whereas the hypsometry of Venus is unimodal

(e.g., Ford and Pettengill, 1992; Rosenblatt et al., 1994), in

contrast to that of Earth that is bimodal, Venus can be broadly

characterized by its low-lying plains, ‘continental’ plateaus, and

volcanic swells. The most prominent highlands include Aphro-

dite Terra, which lies along the equator, and Ishtar Terra, which

is located at high northern latitudes. Ishtar Terra and Aphrodite

Terra differ in that the former is flanked by high-elevation

mountain ranges. Isolated domical volcanic provinces that pos-

sess prominent rift valleys include Atla (0�N, 200�E) and Beta

(25�N, 280�E) Regiones. The highest topographic excursion

corresponds to Maxwell Montes, located in Ishtar Terra, which

reaches more than 10 km above the surrounding plains.

10.05.3.2.2 Gravity
Models of the gravitational field of Venus have been constructed

through the analyses of tracking data from the Pioneer Venus

Orbiter and Magellan spacecraft (for a review, see Sjogren et al.,

1997). The orbit of the Pioneer Venus spacecraft was highly

eccentric and possessed periapse altitudes as low as 150 km near

the equator. The Magellan spacecraft was initially on an eccentric

orbit as well, but through the technique of aerobraking during the

gravity mapping phase of the mission, the orbit was transformed

to a more circular one, with periapse and apoapse altitudes vary-

ing between 155–220 and 350–600 km, respectively.

The most recent model of the Venusian gravitational field is

the 180 degree and order JPL (Jet Propulsion Laboratory)

model MGNP180U of Konopliv et al. (1999). Because of com-

putational constraints at the time, this model was constructed

in three phases. In the first step, a model to spherical harmonic

degree 120 was generated using the full unconstrained covari-

ance matrix and a spatial a priori constraint that depended on

the strength of the gravitational accelerations (such models are

labeled SAAP for Surface Acceleration A Priori). The second

step used this model as the nominal solution and then solved

for the coefficients from degrees 116 to 155 using the same

spatial constraint. For the third step, the coefficients were

determined from degrees 154 to 180, but instead of using a

spatial constraint, the spherical harmonic coefficients were

biased toward a global power law (i.e., a ‘Kaula rule’). Future

models could be improved by performing the inversion in a

single step. As a result of the spatial constraint that was

employed in the first two steps, the spatial resolution of the
model varies dramatically with position on the surface. Spec-

tral resolutions approaching spherical harmonic degree 180

may be realized close to the equator, but other regions possess

resolutions as low as degree 40 (see Figure 3 of Konopliv

et al., 1999).

Images of the MGNP180U radial gravitational field and

geoid are presented in Figure 3, evaluated at a radius of

6051 km, where the spectral coefficients have been truncated

beyond degree 65. As a result of the slow retrograde rotation of

Venus, there is no appreciable rotational flattening of the

planet. These plots show that most gravitational and geoid

anomalies are highly correlated with the surface topography.

The largest radial gravitational anomalies are associated with

the volcanoes Maat and Ossa Mons in Atla Regio, with values

reaching about 270 mGal. The high elevations of Maxwell

Montes, Beta Regio, and numerous smaller volcanic provinces

are also seen to possess significant anomalies. Uncertainties in

the radial component of the gravitational field are typically

10 mGal at the surface but can be as high as 50 mGal in places.

Like Earth, the geoid undulations of Venus possess a

dynamic range of only �200 m. The largest geoid anomalies

correspond to the volcanic swells of Atla and Beta Regiones

and the continental regions of Aphrodite Terra and Ishtar

Terra. It is also seen that the plains with the lowest elevations

possess negative geoid anomalies. Uncertainties in the geoid

are typically 1 m but can reach values as high as 4 m.

10.05.3.2.3 Spectral analysis
A 719 degree and order spherical harmonic shape model

(VenusTopo719) of Venus was constructed by the author

based on the Magellan GTDR3.2 sinusoidally projected data

product (see Table 1). Missing nodes were filled by data

obtained by the Pioneer Venus and Venera 15/16 missions;

the remaining gaps were filled by interpolation using the

Generic Mapping Tools (GMT) (Wessel and Smith, 1991)

command <pr>surface</pr> with a tension parameter of

0.35, and the spherical harmonic expansion was performed

using the sampling theorem of Driscoll and Healy (1994).

The resulting power spectrum was found to be insensitive to

changes in the tension parameter, and the mean planetary

radius varied by about 1 m among the various models.

A comparison between this spherical harmonic model and

the one of Rappaport et al. (1999) shows that the latter suffers

from an increasing loss of fidelity with increasing degree (the

degree correlation between the two models is �0.93 at 360�).
Power spectra of the Venusian topography (VenusTopo719)

and geoid (MGNP180U) are shown in the left panel of Figure 4.

These are similar to those of Earth, with the exception that

the amplitudes of the degree-1 and degree-2 topographic

terms for Venus are relatively smaller. On a log–log plot (data

not shown), a change in slope of the topographic power spec-

trum occurs near degree 100 (Rappaport et al., 1999). This

feature might be real, but it is also possible that it is related to

interpolating over data gaps before performing the spherical

harmonic expansion. The error spectrum of the geoid is seen to

be greater than the geoid itself for degrees greater than 65.

Though the global values of the potential coefficients are gen-

erally unreliable beyond this degree, it should be noted that the

spatial resolution of the gravitational field is a strong function

of position on the surface. Discontinuities in the error spectrum
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Figure 3 (Top) Global topography of Venus, derived from the spherical harmonic model VenusTopo719, referenced to the geoid. (Middle) Total free-air
gravitational anomaly, obtained after truncating the spherical harmonic coefficients of MGNP180U beyond degree 65. (Bottom) Second-order
approximation to the geoid. All images are in a Mollweide projection with a central meridian of 60�E longitude and are overlain by a gradient image
derived from the topographic model.
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Figure 4 Power and cross power spectra of the gravity and topography of Venus. (Left) Power spectra of the topography (VenusTopo719), geoid
(MGNP180U), and geoid error. (Right) Admittance and correlation spectra of the radial gravity and topography. The correlation spectrum is calculated
using the spherical harmonic coefficients of the observed free-air gravity and gravity predicted from topography.
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are artifacts of solving for the potential coefficients in three

separate steps.

The spectral admittance and correlation functions for the

radial component of the gravitational field and topography,

plotted in the right panel of Figure 4, are seen to differ signif-

icantly from those of Earth. The admittance possesses values

between �30 and 50 mGal km�1 for spherical harmonic

degrees up to 100, whereas for Earth, the admittance linearly

increases from �0 to 70 mGal km�1 up to degree 250. The

correlation between the gravitational field and topography is

also significantly higher for degrees less than 40 than it is for

Earth. Nevertheless, beyond about degree 100, the spectral

correlation and admittance are seen to decrease linearly with

increasing degree, which is a result of the poor determination

of the global potential coefficients. It is of note that both the

admittance and correlation for degree 2 are significantly smal-

ler than the neighboring values. As these are unaffected by the

slow retrograde rotation of the planet, these low values may

demand an origin that is distinct from the higher degrees.

Because the Pioneer Venus Orbiter and Magellan spacecraft

were in near-polar orbits, the gravity field is better determined

for the near-sectoral terms. Sectoral terms correspond to the

case |m|¼ l, for which the corresponding spherical harmonic

functions do not possess any latitudinal zero crossings. By

considering only those coefficients where l� |m|<20,

Konopliv et al. (1999) had shown that both the admittance

and correlation between gravity and topography are consider-

ably greater than when considering all coefficients combined.

In particular, the correlation function remains close to 0.7 for

degrees up to 140, at which point it decreases substantially.

Thus, while high-degree localized spectral analyses may be

justified on Venus, the fidelity of the spectral estimates will

be a strong function of both position and the spherical har-

monic degree and order.
10.05.3.3 Mars

10.05.3.3.1 Topography
Prior to the 1990s, the best Martian topographic models were

constructed by a combination of Earth-based radar data, space-

craft radio occultations, and stereo and photoclinometric

observations, all of which suffered from either large
uncertainties or a limited spatial extent (for a review, see

Esposito et al., 1992). The laser altimeter onboard the MGS

spacecraft (MOLA, Mars Orbiter Laser Altimeter) has since

collected an impressive dataset that has revolutionized studies

of the Martian surface (see Smith et al., 2001a, 1999; Zuber

et al., 2000b).

MOLA made more than 640 million ranges to the surface

over the period of 4 years, after being inserted into orbit in

1997. The spot size of the laser at the surface was �168 m, and

these were spaced every 300 m in the along-track direction of

the spacecraft orbit. The intrinsic range resolution of the instru-

ment was 37.5 cm, but range precision decreases with increas-

ing surface slope and could be as poor as 10 m for slopes near

30�. Whereas the along-track orbit errors are less than the size

of the laser footprint, radial orbit errors could sometimes be as

high as 10 m. Nevertheless, these orbit-induced errors could be

minimized by the use of altimetric crossovers. Crossovers occur

whenever two altimeter ground tracks intersect, and the differ-

ence in the two elevation measurements is largely a reflection

of errors in the orbit determination. By parameterizing these

uncertainties by a slowly varying function, the crossover resid-

uals can be minimized (Neumann et al., 2001). Such a proce-

dure was capable of reducing the rms crossover residuals from

about 8.3 to 1.8 m. Using these methods, it has been possible

to measure temporal variations in CO2 snow depth that can

reach 2 m in the polar regions (Smith et al., 2001b).

The topography of Mars (as determined from the 2600-

degree spherical harmonic model MarsTopo2600; see in the

succeeding text) referenced to the geoid (calculated to second-

order accuracy) is displayed in Figure 5. Two of the most

remarkable features are the dichotomy in elevation between

the Northern and southern hemispheres and the regionally

high elevations of the Tharsis volcanic province that is centered

near the equator at 100�W longitude. These two features give

rise to a 3.3 km offset of the center of figure from the center of

mass that is directed toward 64�S and 99�W, of which the

longitudinal offset is directed toward the Tharsis province. In

addition to these long-wavelength features, there is also an

�20 km difference between the polar and equatorial radii

that is a result of the planet’s rotational flattening.

Other major topographic features include the giant Hellas

(40�S, 65�W), Argyre (50�S, 40�W), and Isidis (15�N, 85�E)
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Figure 5 (Top) Global topography of Mars derived from the spherical harmonic shape model MarsTopo2600, referenced to the geoid. (Middle)
Total free-air gravitational anomaly on the rotating reference ellipsoid of Ardalan et al. (2010), obtained after truncating the spherical harmonic
coefficients of JGMRO_110C beyond degree 85. (Bottom) Second-order approximation to the geoid height with respect to the reference ellipsoid.
All images are in a Mollweide projection with a central meridian of 100�W longitude and are overlain by a gradient image derived from the
topography model.
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impact basins; the Elysium volcanic province (25�N, 145�E);
the rift valley Valles Marineris; and the prominent volcanoes

that are superposed on the Tharsis province. The highest ele-

vation corresponds to the volcano Olympus Mons, which rises

almost 22 km above the MOLA reference geoid.

10.05.3.3.2 Gravity
The gravitational field of Mars has been improved by

the successive acquisition of radio tracking data from the

Mariner 9, Viking 1 and 2, MGS, Mars Odyssey, and Mars

Reconnaissance Orbiter (MRO) missions. A major improve-

ment in the gravity solutions came with the acquisition of

data from the MGS mission (see Konopliv et al., 2006;

Lemoine et al., 2001; Yuan et al., 2001). This spacecraft was

in a near-polar orbit, and during the early portion of the

mission when the orbit was highly elliptical, tracking data

from altitudes as low as 170 km were acquired at latitudes

between 60� and 85�N. Through the technique of aerobraking,

the spacecraft was put into a near-circular mapping orbit with

periapse and apoapse altitudes of 370 and 435 km, respec-

tively. Mars Odyssey acquired some tracking data from alti-

tudes as low as �200 km (primarily over the southern

hemisphere), with the rest from a near-circular 390�455 km

mapping orbit. The last major advance was the collection of

tracking data from the MRO spacecraft. For this mission, track-

ing data were acquired from an elliptical orbit with periapse

altitudes as low as 255 km over the south pole and apoapse

altitudes of 320 km over the north pole. Data were also col-

lected for a brief period with altitudes as low as 220 km over

the northern hemisphere.

The most recent and highest resolution gravity solution of

Mars is the JPL 110 degree and order model JGMRO_110C

(Konopliv et al., 2011). This model employs MGS, Mars

Odyssey, and MRO tracking data in combination with surface

tracking data from the Pathfinder lander, the latter of which

were used to improve knowledge of the orientation of Mars. In

the absence of a priori constraints, inversions for the global

spherical harmonic coefficients give rise to an unrealistic

power spectrum beyond degree 85. In order to obtain a higher-

resolution model with realistic power, a Kaula constraint was

applied beyond this degree. This solution also obtained the

seasonal even zonal J2 and the better determined odd zonal J3
signals that result from CO2 mass exchange between the two
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Figure 6 Power and cross power spectra of the gravity and topography of M
(JGMRO_110C), and geoid error. (Right) Admittance and correlation spectra o
using the spherical harmonic coefficients of the observed free-air gravity and
polar ice caps and the k2 Love number from time-variable

signals associated with tides raises by the Sun.

An image of the total gravitational anomaly of the model

JGMRO_110C is plotted in Figure 5, where the spherical har-

monic coefficients have been truncated beyond degree 85. For

this map, the normal gravity field predicted for the Mars rotat-

ing reference ellipsoid of Ardalan et al. (2010) was removed.

Clearly visible are the large positive anomalies associated with

the volcanoes in the Tharsis plateau and a negative gravity

moat that surrounds this province (Phillips et al., 2001).

Large positive anomalies are also evident for some of the

largest impact basins, such as Isidis, Argyre, and the buried

Utopia basins (45�N, 110�E) that lie in the northern plains.

A negative gravitational anomaly is clearly associated with the

Valles Marineris rift valley, and negative anomalies surround-

ing some mountains and volcanoes seem to indicate a flexural

origin. The spatial resolution of this field varies laterally, with

an effective resolution near spherical harmonic degree 86 for

northern latitudes and 110 near the south pole. Formal uncer-

tainties in the radial gravity are at most 10 mGal (A. Konopliv,

personal communication).

The Martian geoid, as obtained from the model

JGMRO_110C and plotted with respect to the reference ellip-

soid of Ardalan et al. (2010), is shown in Figure 5. The geoid

undulations of Mars are seen to possess the largest amplitudes

among the terrestrial planets, with a dynamic range of over

2.5 km. The signal is largely symmetrical about the Tharsis

province, where a central geoid high is surrounded by an

annular low. Other geoid highs are associated with the Isidis

and Utopia impact basins, as well as the Elysium volcanic

rise. Uncertainties in the geoid are generally no more than

2 m (A. Konopliv, personal communication).

10.05.3.3.3 Spectral analysis
The power spectra of the Martian topography (from the

author’s spherical harmonic model MarsTopo2600, calculated

from the gridded datasets available at the PDS (planetary data

system) website) and geoid (JGMRO_110C), are plotted in

Figure 6. In comparison with the topographic power spectrum,

the Martian geoid is seen to have greater amplitudes by

about two orders of magnitude than both Earth and Venus.

Furthermore, the first 5 degrees of the Martian geoid is consid-

erably greater than would be expected based upon an
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extrapolation of the higher-degree terms. This low-degree sig-

nal is likely a consequence of the lithospheric load and deflec-

tion associated with the Tharsis province (see Phillips et al.,

2001; Zuber and Smith, 1997). The error spectrum of the geoid

is seen to be larger than the signal for degrees greater than

�100.

The admittance and correlation of the radial gravitational

field and topography are shown in the right panel of Figure 6.

The admittance function gradually increases with increasing

degree, attaining a relatively constant value beyond degree

30. Beyond degree 85, both the admittance and correlation

decrease as a result of the poor resolution of the gravity field.

While the shape of the admittance function is somewhat sim-

ilar to that of Earth, it is important to note that the amplitudes

are considerably larger at high degrees (�100 mGal km�1 in

comparison with �35 mGal km�1). Indeed, these large values

are comparable to what would be expected for uncompensated

surface topography. One apparent anomaly with the admit-

tance spectrum is the relatively high value of 53 mGal km�1 for

the degree-three term.

With few exceptions, the correlation between the gravity

and gravity predicted from topography is also seen to be very

high, with values between about 0.8 and 0.9. Similar to the

Venusian gravity model, the near-sectoral terms of the Martian

gravity solutions are relatively better determined because of the

near-polar orbits of the MGS and MRO spacecraft. When only

these near-sectoral terms are used (l� |m|<10), the correlation

between the gravity and topography is considerably larger than

that shown in Figure 6 for degrees greater than 85 (Konopliv

et al., 2011).
10.05.3.4 Mercury

10.05.3.4.1 Topography
Prior to the MErcury Surface, Space ENvironment, GEochem-

istry, and Ranging mission, MESSENGER (Solomon et al.,

2001), the shape of Mercury was only poorly constrained by

Earth-based radar ranging to equatorial latitudes (Anderson

et al., 1996a; Clark et al., 1988; Harmon et al., 1986) and by

a few local elevations models made from Mariner 10 stereo

imagery (André et al., 2005). MESSENGER has since acquired a

wealth of topographic data by means of satellite laser altimetry

(Smith et al., 2010c; Zuber et al., 2008, 2012), stereo-

photogrammetry (Preusker et al., 2011), optical limb measure-

ments (Oberst et al., 2011), and spacecraft radio occultations

(Perry et al., 2011). The spacecraft continues to acquire data in

an extended mission.

MESSENGER was launched in 2004, performed three flybys

of Mercury in 2008–09, and was placed into a near-polar orbit

in 2011. The orbit of the spacecraft during the mapping phase

was highly elliptical, with altitudes varying from about 200 km

at latitudes near 60�N to about 15200 km over the southern

hemisphere. Because of this, the laser altimeter could range

southward only to 15�S. The laser spot size on the surface

varied with altitude, from about 15 to 100 m, and the laser

shots were separated by about 400 m along track. The near-

polar orbit led to dense altimetric coverage near the north pole,

decreasing coverage toward the equator. Supplementing these

measurements,�180 radio occultation point measurements of

the planet’s shape were made when the spacecraft passed
behind the planet, with about half of these being located in

the southern hemisphere. The processing of stereo imagery has

led to the construction of a global elevation model, and a

future challenge is to combine the stereo-derived shape models

with the laser altimetry and radio occultation data.

The global shape of Mercury derived from stereo imaging

(R. Gaskell, personal communication) is shown in Figure 7. As

expected from images of the surface, the planet has been

shaped largely by impact processes. Several large impact basins,

such as the 1500 km diameter Caloris basin (31�N, 160�E), are
visible as are numerous smaller craters. The largest basins are

not as topographically distinct as those onMars and the Moon,

suggesting that post-basin modification processes have oper-

ated after their formation. One clear example of this is the

topographic bulge in the northern portion of the Caloris

impact basin that is higher than most of its topographic rim

(Zuber et al., 2012). Smooth plains are also present, particular

at latitudes poleward of about 60�N, that are likely to represent

volcanic flows (Zuber et al., 2012). In terms of the planet’s

long-wavelength shape, the highest elevations are found

approximately near 0� and 180� longitude, which corresponds

to the axis of the planet’s minimum principal moment of

inertia (e.g., Davies and Batson, 1975).

10.05.3.4.2 Gravity
The gravity field of Mercury has been constrained by radio

tracking of the Mariner 10 and MESSENGER spacecraft. Track-

ing data fromMariner 10 were acquired only during two flybys,

and these allowed for an estimation of the degree-2 gravity

coefficients J2 and C22 (Anderson et al., 1987). Radio tracking

of the MESSENGER spacecraft has since given rise to a dramatic

improvement in our understanding of Mercury’s gravity field,

with global solutions being developed to spherical harmonic

degree and order 20 (Genova et al., 2013; Smith et al., 2012).

Nevertheless, as a result of the highly eccentric orbit of the

spacecraft, the global models are poorly constrained over the

southern hemisphere. Whereas errors in the surface gravity

field are less than 20 mGals at latitudes poleward of 30�N,

errors are more than 60 mGals at latitudes southward of

about 30�S (Genova et al., 2013). Gravity models with higher

spatial resolution over the northern hemisphere should be

possible by using localized inversion approaches (cf. Han

et al., 2009) or with a spatially varying constraint as was

done for Venus (Konopliv et al., 1999).

The total gravitational anomaly of the model GGMES_20v04

is plotted in Figure 7, where several positive gravitational anom-

alies are visible with values approaching 180 mGal. Some of

these anomalies are associatedwith clear topographic signatures,

such as the Caloris impact basin and a domical rise in the

northern lowlands (Smith et al., 2012), whereas others appear

to have little correlation with topography. The volcanic northern

lowlands (north of about 60�N) are associated with a regional

negative gravitational anomaly, as are the low elevations associ-

ated with the large Rachmaninoff impact basin (28�N, 56�E).
Large regions of high-standing topography do not possess any

significant gravitational anomaly, indicating that they are likely

to be isostatically compensated.

The height of the geoid of Mercury, measured with respect

to the mean planetary radius, has a dynamic range of about

400 m. As seen in Figure 7, the planet has prominent signals
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Figure 7 (Top) Global topography of Mercury (R. Gaskell, personal communication), referenced to the geoid. (Middle) Total free-air gravitational
anomaly from the spherical harmonic model GGMES_20v04. (Bottom) Second-order approximation to the geoid. All images are in a Mollweide
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that arise from the J2 and C22 gravity coefficients. This corre-

sponds to positive geoid anomalies located near 0� and 180�

longitude and negative anomalies near both poles, reminiscent

of that of the Moon. The C22 coefficient is proportional to

the difference in the intermediate and minimum principal

moments of inertia (e.g., Lambeck, 1988) and is responsible

for Mercury having been captured in its present 3/2 spin–orbit

resonance (cf. Correia and Laskar, 2009).

10.05.3.4.3 Spectral analysis
A spherical harmonic model of the shape of Mercury was

constructed from the MESSENGER laser altimeter and radio

occultation data (GTMES_24v01; Smith et al., 2012). The

power spectra of this model, the geoid from the model

GGMES_20v04, and the geoid error are plotted in Figure 8,

and the relative amplitudes of the topography and geoid spec-

tra are seen to be comparable to those of Mars. As the error

spectrum of the geoid does not intersect that of the geoid, it

should be possible to construct higher-resolution models over

the northern hemisphere.

The correlation and admittance spectra of the gravitational

field and topography are shown in the right panel of Figure 8.

In this plot, the correlation spectrum was calculated using the

observed free-air gravity and the gravity predicted from the

surface topography. With the exception of degree 4, the admit-

tance possesses values of a few tens of mGal km�1. This is

much less than the value predicted for uncompensated surface

topography, indicating that much of the topography at these

wavelengths is probably compensated. The correlation pos-

sesses values between about 0.4 and 0.8, which is somewhat

similar to Mars and the Moon over the same wavelength range.

The less than unit correlation is likely a consequence of the

presence of mascon basins, such as Caloris, where the gravity

and topography are locally anticorrelated, as well as the pres-

ence of gravitational anomalies from the mantle and deep crust

that do not correlate with surface topography.
10.05.3.5 The Moon

10.05.3.5.1 Topography
The topography of the Moon has been measured by several

means, including satellite altimetry, stereophotogrammetry,

and radar interferometry (see Wieczorek et al., 2006, for an
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Figure 8 Power and cross power spectra of the gravity and topography of
(GGMES_20v04), and geoid error. (Right) Admittance and correlation spectra
calculated using the spherical harmonic coefficients of the observed free-air
historical review). However, because of theMoon’s synchronous

rotation, most early studies were restricted either to the nearside

hemisphere or along the equatorial ground tracks of the Apollo

command and service modules. The Clementine mission,

launched in 1994, was the first to measure absolute elevations

of the lunar surface on a near-global scale (Smith et al., 1997;

Zuber et al., 1994). 72548 valid altimetric ranges were acquired

along north–south profiles equatorward of �80�, and in com-

bination with elevation models of the polar regions based on

stereophotogrammetry, a global shape model was created (U.S.

Geological Survey, 2002). The next major advance came from

laser altimetric ranging from three orbiting spacecraft: Kaguya

(Araki et al., 2009) and Chang’e 1 (Ping et al., 2009), both

launched in 2007, and LRO launched in 2009 (Smith et al.,

2010a,b). In addition to including laser altimeters, the acquisi-

tion of stereo imagery from these missions has led to the con-

struction of both regional and global terrane models (e.g.,

Haruyama et al., 2008; Scholten et al., 2012).

The most successful of the recent lunar altimeters is the

Lunar Orbiter Laser Altimeter (LOLA) (Smith et al., 2010a,b)

onboard the LROmission. LOLA is a multibeam laser altimeter

that operates by spitting a single laser pulse into five output

pulses. A five-spot cross pattern is formed on the surface by

constructive interference in the far field, which is then detected

by five individual receivers, each with a range accuracy of about

10 cm. The spot size of each laser on the surface is 5 m, and the

distance between spots is 25 m. The orbital motion of the

spacecraft, combined with the 28 Hz repetition frequency,

ensures that each five-spot pattern is repeated every 50 m.

Bidirectional surface slopes can be calculated for each laser

shot or for a variety of longer baselines (Rosenburg et al.,

2011). At the present time, more than 6 billion valid ranges

have been made to the Moon, and an additional 2 billion are

expected over the lifetime of the laser. Since the orbit of the

Lunar Reconnaissance Orbiter is polar, the altimetric coverage

near the poles is extremely dense. Nevertheless, some

kilometer-scale data gaps exist at equatorial latitudes. Stereo

imagery can be used to create elevation models with resolu-

tions approaching about 10 m (Haruyama et al., 2008) to

75 m (Scholten et al., 2012), and a future challenge is to

combine the altimetric and stereo-based elevation models.

It should be noted that there are two reference frames that

are in common use for the Moon (Archinal et al., 2011a,b).
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One corresponds to the principal axes defined by the moments

of inertia, which is used in the construction of gravitational

models. The other is defined by the mean position of Earth and

the Moon’s rotation axis and is used for many topographic

models. The two coordinate frames are mostly offset by a bias

with maximum differences up to 873 m, which turns out to be

significant when analyzing the high-resolution GRAIL gravity

data (Williams et al., 2013). The LOLA topography model

(using principal-axis coordinates) is presented in Figure 9

where it is referenced to the GRAIL geoid.

The most dramatic feature of the Moon’s topography is the

giant South Pole–Aitken impact basin on the farside southern

hemisphere. This impact basin possesses a total relief of more

than 10 km, and with a diameter of over 2000 km, it is the

largest recognized impact structure in the solar system. Other

impact basins and craters of various sizes are seen to have

shaped the relief of the lunar surface, and the extensive mare

basaltic lava flows on the nearside hemisphere, which are

relatively younger, are seen to be comparatively smooth. Also

of note is that the Moon possesses a 1.9 km displacement of its

center of figure from its center of mass in the direction of 8�N
and 157�W (e.g., Smith et al., 1997). The total dynamic range

in lunar elevation is just under 20 km.
10.05.3.5.2 Gravity
The gravitational field of the Moon has been determined by the

radio tracking of orbiting spacecraft and by intersatellite rang-

ing between co-orbiting spacecraft. Radio tracking data from

the Lunar Orbiter, Apollo, Clementine, and Lunar Prospector

missions led to the development of a degree-150 spherical

harmonic model (Konopliv et al., 2001). However, even

though the nearside field was moderately well resolved by the

30 km altitude Lunar Prospector data, little was known about

the farside hemisphere as it is not possible to track a satellite

when it is occulted by the Moon. The first direct tracking data

over the farside hemisphere came from the Kaguya mission

that was launched in 2007. In addition to the main orbiter

(with an altitude of about 100 km), this mission had a relay

satellite for performing four-way radio tracking of the main

satellite over the farside hemisphere and a subsatellite for very

long baseline interferometry (Araki et al., 2009; Goossens

et al., 2011; Matsumoto et al., 2010). Data from the Kaguya

mission provided a gravitational model that was valid globally

to about spherical harmonic degree 70.

The last major advance came with the launch of the GRAIL

mission in 2011 (Zuber et al., 2013a,b). This mission was very

similar to the terrestrial mission GRACE, in that intersatellite

ranges between two co-orbiting spacecraft were used to con-

struct a global gravity model. During the 3 months of the

primary mission, the two spacecraft had a mean altitude near

50 km, allowing for the construction of models up to spherical

harmonic degree 660 (Konopliv et al., 2013b; Lemoine et al.,

2013). During the 3 months extended mission, the altitudes of

the two spacecraft were reduced to about 25 km, allowing for

the construction of models up to spherical harmonic degree

900. Since the satellite orbits were somewhat elliptical, the

minimum elevations over the lunar surface range from only a

few kilometers to about 30 km. Though the final models are

valid globally to about spherical harmonic degree 750, it is
possible to perform localized analyses to higher resolutions

where the spacecraft elevations were low.

The total gravitational anomaly and geoid of the GRAIL

extended mission model GRGM900B (truncated at degree

550) are plotted in Figure 9. The major features of this map

include the large positive gravitational anomalies associated

with the nearside impact basins, colloquially referred to as

‘mascons’ (e.g., Muller and Sjogren, 1968), and the negative

gravity moats that surround these basins. The majority of the

gravity signal is a result of the surface relief of the Moon, but

important signals that are uncorrelated with topography are

observed in the lunar mare and elsewhere.

In contrast to Earth, which possesses maximum geoid

undulations of �100 m, the dynamic range of the lunar

geoid is more than 1.1 km. When considering phenomena

such as basalt flow directions, it is thus necessary to use eleva-

tions that are referenced to the geoid. A long-wavelength J2 and

C22 signal is evident in Figure 9, with maxima at the sub- and

anti-Earth points, and this signal may represent a fossil tidal

deformation that was frozen into the lithosphere early in the

orbital evolution of the Moon (e.g., Garrick-Bethell et al.,

2006; Jeffreys, 1976; Lambeck and Pullan, 1980).

Finally, it is noted that the orientation of theMoon depends

upon its three principal moments of inertia, which are related

to the degree-2 gravity coefficients (e.g., Lambeck, 1988). For a

synchronously rotating satellite with zero orbital inclination

and eccentricity, the minimum energy configuration is

achieved when the maximum moment of inertia lies along

the rotation axis and when the minimum moment coincides

with the Earth–Moon direction (see also Peale, 1969; Ward,

1975). A 180� rotation of the Moon about its rotation axis, as

might occur following a large impact event (Wieczorek and Le

Feuvre, 2009), would thus be equally stable as its current

configuration.

10.05.3.5.3 Spectral analysis
The power spectra of the LOLA principal-axis referenced

topography (from the author’s model LOLA2600p) and the

GRAIL GRGM900B geoid are plotted in the left panel of

Figure 10. In comparison with Earth, the power spectrum

of the lunar geoid is seen to be about two orders of magni-

tude more important when compared to the topography

spectrum. The lunar geoid and error spectra intersect near

degree 750, which is the effective global resolution of the

model. Nevertheless, since the GRAIL spacecraft possessed

altitudes varying from a few to 30 km during the extended

mission, the spatial resolution of the model is in some

places better or worse than this spherical harmonic degree.

The small upturn in the geoid spectrum near degree 850 is a

result of higher-degree aliases that are not resolved by the

degree-900 model, indicating that it will be possible to

construct even higher-resolution models.

The correlation and admittance spectra for the gravity and

topography are plotted in the right pane of Figure 10. In this

plot, the correlation spectrum was calculated using the

observed free-air gravity and the gravity predicted from the

surface topography. The correlation and admittance spectra

show low values at the lowest degrees (less than about 0.5

and 100 mGal km�1, respectively). Indeed, these spectra pos-

sess negative values for some degrees, indicating that gravity
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Figure 9 (Top) Global topography of the Moon from the spherical harmonic model LOLA2600p, referenced to the GRGM900B geoid. (Middle)
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Figure 10 Power and cross power spectra of the gravity and topography of the Moon. (Left) Power spectra of the topography (LOLA2600p),
geoid (GRGM900B), and geoid error. (Right) Admittance and correlation spectra of the radial gravity and topography. The correlation spectrum is
calculated using the spherical harmonic coefficients of the observed free-air gravity and gravity predicted from topography.
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and topography are anticorrelated at these wavelengths. These

small values for the lowest degrees are simply a result of the

presence of mascon impact basins, which are positive gravita-

tional anomalies that possess low elevations. Beyond about

degree 100, the correlation approaches 0.99, and the admit-

tance slowly increases from values near 100 to about

200 mGal km�1. The value of the admittance at these degrees

is consistent with uncompensated topography (Wieczorek

et al., 2013), and the slow increase in the admittance function

is a result of the nonlinear relation between gravity and topog-

raphy (see Section 10.05.4). The correlation starts to decrease

near degree 550, and this could be a result of a reduced global

fidelity of the gravity model at these degrees or to short-wave-

length geologic signals where the gravity and topography sig-

nals are not perfectly correlated.
10.05.4 Methods for Calculating Gravity
from Topography

Geophysical investigations that employ gravitational and topo-

graphic data often attempt to fit the observations with those

predicted from a model that contains several parameters. For

example, lithospheric flexure calculations depend upon several

unknowns, including the effective elastic thickness of the lith-

osphere, crustal thickness, and the density of the crust and

mantle. By comparing predicted gravitational anomalies

induced by the deflection of density interfaces with the

observed values, the parameters of such a model can be con-

strained. Whereas several methods exist for calculating the

gravitational field related to relief along a density interface, as

is described in the succeeding text, this is oftentimes most

easily performed in the spherical harmonic domain.

The calculation of the gravitational potential can be con-

siderably simplified by use of the two well-known identities:

1

r� r0j j ¼
1

r

X1
l¼0

r0

r

� �l

Pl cosgð Þ for r� r0 [30]

and

Pl cosgð Þ¼ 1

2lþ1

Xl
m¼�l

Y lm y, fð ÞYlm y0, f0ð Þ [31]
where Pl is an unnormalized Legendre polynomial and g is the
angle subtended between r and r0. (Equation [31] is commonly

referred to as the Legendre addition theorem.) By inserting

these equations into the expression for the gravitational poten-

tial (eqn [17]), it is simple to show that the spherical harmonic

coefficients of eqn [19] (the Stokes coefficients) are equal to

Clm ¼ 1

MRl
0 2lþ1ð Þ

ð
V

r r0ð Þr0 lY lm y0, f0ð ÞdV 0 [32]

It is important to note that this formulation of the gravita-

tional potential can only be used when the observation point is

greater than the maximum radius of the body.

Next, consider the case where there is relief h(y, f) refer-

enced to a spherical interface of radiusD and where the density

r between h and D depends only on latitude and longitude

(when h is negative, r is considered negative as well). For this

situation, it is possible to obtain exact expressions for the

corresponding potential coefficients that are similar to those

developed by Parker (1972) in the Cartesian domain. Integrat-

ing eqn [32] over r0 and expanding powers of the relief in a

Taylor series, the potential coefficients of eqn [19], referenced

to a radius D, are (see Wieczorek and Phillips, 1998)

Clm ¼ 4pD3

M 2lþ1ð Þ
Xlþ3

n¼1

rhnð Þlm
Dnn!

Yn

j¼1
lþ4� jð Þ

lþ3ð Þ [33]

The spherical harmonic coefficients of the density multi-

plied by the relief to the nth power have the explicit expression

(cf. eqn [8])

rhnð Þlm ¼ 1

4p

ð
O
r y, fð Þhn y,fð Þ½ 	Ylm y, fð ÞdO [34]

and when the density is constant, eqn [33] reduces to eqn [9]

of Wieczorek and Phillips (1998). As a result of the inequality

in the identity of eqn [30], this expression for the potential is

valid only when the radius r is greater than the maximum

elevation of Dþh. Extensions, special cases, and alternative

forms of this equation have been derived independently sev-

eral times in the literature (e.g., Balmino, 1994; Chambat and

Valette, 2005; Chao and Rubincam, 1989; Martinec et al.,

1989; Rapp, 1989). It is worth emphasizing that the relief h

in eqn [33] must be calculated with respect to a spherical

interface and not the ellipsoid or geoid: using a different refer-

ence surface would give inaccurate results.



Gravity and Topography of the Terrestrial Planets 173
For the case where the density r is constant, the potential

coefficients can be obtained simply by calculating the spherical

harmonic coefficients of the relief to the nth power. While the

sum of eqn [33] is finite and hence exact, the number of terms

grows linearly with spherical harmonic degree. Nevertheless, as

each succeeding term is smaller than the previous, in practice,

this sum can be truncated beyond a maximum value nmax for

which the truncated terms are smaller than the resolution of

the gravity model.

For certain applications, it is sufficient to use the first-order

term of eqn [33]:

Clm ¼ 4pD2 rhð Þlm
M 2lþ1ð Þ [35]

This expression is commonly referred to as the ‘mass-sheet’

approximation, as the calculated gravitational anomaly would

be exact if it arose from a spherical interface with a surface

density of rh. (The higher-order terms are referred to as the

‘finite-amplitude’ or ‘terrain’ correction.) Using this expression,

the radial gravity (see eqn [25]) is seen to approach asymptot-

ically with increasing l the Bouguer slab approximation of

2prGh.
The effect of truncating the sum of eqn [33] beyond nmax is

illustrated in Figure 11 for the specific case of determining the

Bouguer correction of Earth, Venus, Mars, Mercury, and the

Moon. The term Bouguer correction here refers to the contri-

bution of the gravitational potential that results from the mass

between the mean planetary radius and the surface. The true

value of the Bouguer correction was approximated using

nmax¼20, and the maximum difference of the total gravity in

the space domain that results from truncating at lower values

of nwas calculated on the planet’s reference ellipsoid. For these

calculations, the full resolution of the planetary topography

was used in calculating the potential coefficients, but the result-

ing gravity field was expanded in the space domain only up to

the spherical harmonic degree indicated in the figure. To mit-

igate against aliases that could arise when raising a function to

the nth power, all calculations were performed on a grid that

could resolve spherical harmonics up to degree 5000.
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Figure 11 Maximum error associated with the Bouguer correction as
a function of the order nmax. The Bouguer correction error is here
defined as the error in the total gravitational attraction resulting from
surface relief with respect to the mean planetary radius, evaluated on
the reference ellipsoid. The true value was approximated by nmax¼20,
and the crustal density was assumed to be 2900 kg m�3. The values
in parentheses correspond to the maximum spherical harmonic degree
used in calculating the gravity field.
Figure 11 shows that the value of nmax required to achieve

1 mGal accuracy is highly dependent upon the maximum

spherical harmonic degree of the desired gravitational field.

To obtain accuracies of a few milligals for Mercury, Venus,

and Mars, whose gravity fields are only resolved up to a max-

imum spherical harmonic degree of 180, only the first four

terms of eqn [33] are required. However, when calculating

high-resolution gravity fields for the Moon and Earth (with

degrees up to 900 and 2160), it is necessary to utilize terms up

to 14 and 17, respectively (see also Balmino et al., 2012). If it

were necessary to calculate fields up to only spherical harmonic

degree 360 for Earth (for use with the gravity model EGM96),

then the first four terms would be sufficient.

Finally, it is noted that alternative means exist for calculat-

ing the theoretical gravitational field of a body and that these

may be preferable to the aforementioned approach for certain

applications. One method developed by Belleguic et al. (2005)

is quasi-analytic and allows for the calculation of the potential

and gravity at any point in a body (this is in contrast to the

aforementioned approach that is applicable only to radii

greater than the maximum radius). This method starts by

mapping irregularly shaped density interfaces to spherical

ones and then determines the radial derivatives of the potential

and gravitational field on this surface. Using exact values for

the potential and gravity field on an interface exterior to the

planet (as obtained from a method similar to eqn [33]), these

fields are then propagated downward using a first-order Taylor

series approximation. This technique is useful for lithospheric

flexure calculations as the net lithospheric load is a function of

the potential at the major density interfaces.

A second method for calculating the gravitational field is

based upon approximating the shape of a celestial body by a

polyhedron. Exact expressions for the potential of a homoge-

neous polyhedron have been derived by Werner and Scheeres

(1997), and expressions for the corresponding spherical har-

monic coefficients are given in Werner (1997) (see also Tsoulis

et al., 2009). The benefit of using this approach is that the

resolution of the model (i.e., the spacing between vertices) can

be varied according to the resolution of the gravitational field.

An application of this method for determining the interior

density of an asteroid is given by Scheeres et al. (2000). Alter-

natively, one could transform eqn [17] into a surface integral

by use of Gauss’ law and perform the integral numerically for a

given shape model (e.g., Cheng et al., 2002).
10.05.5 Crustal Thickness Modeling

It is well known that the modeling of potential fields is non-

unique. As an example, eqns [19] and [35] show that any

external gravitational field can be interpreted as a surface den-

sity rh placed at an arbitrary radius D. Nevertheless, by using

simplifying assumptions based on geologic expectations, it

becomes possible to invert uniquely for parameters related to

the interior structure of a planet.

Perhaps the simplest example of such an investigation is the

construction of a global crustal thickness model. In this case,

the nonuniqueness associated with potential modeling is

removed by assuming that the observed gravitational field

arises only from relief along the surface and crust–mantle
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interface and that the densities of the crust and mantle are

known. It is further required either to assume a mean crustal

thickness or to anchor the inverted crustal thickness to a given

value at a specific locale. If lateral density variations in either

layer could be constrained by other means, these could be

incorporated into the model.

The first step is to calculate the Bouguer correction, which is

the contribution to the potential of surface relief referenced to

the mean planetary radius. Subtracting this from the observed

gravitational field yields the Bouguer anomaly, and this is then

ascribed to being caused by relief along the crust–mantle inter-

face at an average radius D. To the first order, this relief could

be determined in the spectral domain by downward continu-

ing the Bouguer anomaly coefficients Clm
BA to radius D and then

setting these equal to those predicted from the mass-sheet

approximation of eqn [35]. However, two additional factors

generally need to be taken into account in such an analysis.

First, downward continuing the Bouguer anomaly amplifies

short-wavelength noise that is often present in the observed

gravitational field. Second, the first-order mass-sheet approxi-

mation may not be sufficiently accurate if the undulations

along the crust–mantle interface are large.

By minimizing the difference in the spectral domain

between the observed and predicted Bouguer anomalies, the

shape of the crust–mantle interface can be computed via the

following equation (see Wieczorek and Phillips, 1998):

hlm ¼wl
CBA
lmM 2lþ1ð Þ
4pDrD2

R

D

� �l
"

�D
Xlþ3

n¼2

hnð Þlm
Dnn!

Yn

j¼1
lþ4� jð Þ

lþ3ð Þ

3
5 [36]

The density jump across the crust and mantle is given by

Dr, R is the reference radius of the Bouguer anomaly coeffi-

cients, and wl is a filter that stabilizes the downward continu-

ation procedure. The explicit form of the filter can be

determined by using an additional constraint that minimizes

the mantle relief.

While there is no simple analytic solution to eqn [36], the

relief h can be determined using an iterative approach: First, the

coefficients hlm are approximated by ignoring the higher-order

terms on the right-hand side; then, using this estimate, the

higher-order terms are calculated, and a new estimate of hlm
is obtained (see also Wieczorek et al., 2013). The second step is

iterated until the relief converges to a stable solution. It is

important to note that these models do not assume the crust

to be isostatically compensated; such a hypothesis could be

tested for a given model. Example crustal thickness models that

were obtained using this procedure are discussed in the suc-

ceeding text, along with the major modeling assumptions that

are specific to each body.

Crustal thickness models for Venus and Mars are presented

in Figure 12. For the Venusian model, a mean crustal thickness

of 35 km was assumed, the potential and topography coeffi-

cients were truncated beyond degree 60, and densities of 2900

and 3330 kg m�3 were used for the crust and mantle, respec-

tively. The inclusion of finite-amplitude corrections for Venus

affects the obtained crustal thicknesses by only a few kilome-

ters. (For alternative models, see Orth and Solomatov, 2012;

James et al., 2013.) The model for Mars is an updated version

from Neumann et al. (2004) that uses the JGM95J01 gravity

model. An average crustal density of 2900 kg m�3 was assumed
for this model, and the low density of the polar caps, the higher

than average densities of the Tharsis volcanoes, and the

gravitational attraction resulting from the core flattening were

explicitly taken into account. A mean crustal thickness of

45 km was assumed, and in downward continuing the

Bouguer anomaly, a filter was constructed such that the

power spectrum of the Moho relief resembled that of

the surface relief.

A crustal thickness model for Mercury is presented in

Figure 13. For this model, densities of 2900 and

3200 kg m�3 were used for the crust and mantle, respectively,

and the filter wl was chosen to possess a value of 0.5 at degree

40. Under the assumption that the minimum crustal thickness

on Mercury is 5 km, the average crustal thickness is found to be

23 km. Since the spatial resolution of the gravity field is poor in

the southern hemisphere, the inverted crustal structure there

should be treated with caution. The crustal thickness model for

the Moon in this figure is an updated version from Wieczorek

et al. (2013) that uses gravity data derived from the GRAIL

extended mission. Lateral variations in crustal density, which

were estimated from remote sensing data, were used in calcu-

lating the gravity field for this model. A crustal porosity of 12%

was assumed, a mantle density of 3220 kg m�3 was used, and

the filter wl was chosen to have a value of 0.5 at 80�. With an

average crustal thickness of 34 km, this model possesses min-

imum crustal thicknesses that are less than 1 km and fits the

30 km seismic constraint (Lognonné et al., 2003) at the Apollo

12 and 14 landing sites. Neglecting the finite-amplitude terms

in eqn [36] would give rise to errors as large as 20 km for the

Moon (Neumann et al., 1996).
10.05.6 Admittance Modeling

In the crustal thickness modeling of the preceding section, the

nonuniqueness associated with potential modeling was

removed by making certain assumptions about the mean

crustal thickness and the density of the crust and mantle.

These and other parameters can be estimated if one instead

assumes that surface topography is supported by a specific

mechanism, such as lithospheric flexure or Airy compensation.

Using such a model, the relationship between gravity and

topography can be determined, and by comparing to the

observed values, model parameters can be estimated. As is

described in the following two subsections, two methods are

in common use: One is based upon modeling the GTR in the

space domain, whereas the other models the admittance and

correlation functions in the spectral domain.
10.05.6.1 Spatial Domain

One method that has proven to be fruitful for estimating the

mean crustal thickness of a planet is modeling of the GTR in

the space domain. This technique was initially developed by

Ockendon and Turcotte (1977) and Haxby and Turcotte

(1978) for Earth, where it was shown that the isostatic geoid

anomaly was approximately equal to the vertical dipole

moment of density variations within the lithosphere. For the

specific cases of Airy and Pratt isostasy, the ratio between the

geoid and topography was found to be proportional to
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Figure 12 Crustal thickness models for Venus and Mars. Both images are in a Mollweide projection and are overlain by a gradient image derived from
the surface topography. The central meridian is 60�E for Venus and 100�W for Mars.
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the crustal thickness. Their method was derived using a Carte-

sian geometry and is strictly valid in the long-wavelength limit.

An alternative approach has been developed in spherical

coordinates by Wieczorek and Phillips (1997) where it has

been shown that the GTR, N/h, can be approximated by the

expression

N

h
¼R

Xlmax

l¼lmin

WlQl [37]

where lmin and lmax correspond to the minimum and maxi-

mum spherical harmonic degrees that are considered, R is the

mean planetary radius, Ql is the linear transfer function

between the potential and topographic coefficients, and Wl is

a weighting function that is proportional to the topographic

power of degree l:
Wl ¼ S hh lð Þ
,Xlmax

i¼lmin

S hh ið Þ [38]

The underlying assumption of this model is that the GTR is

independent of position for a given compensation model, and

this has been validated empirically for the highlands of the

Moon and Mars for the case of Airy isostasy (Wieczorek and

Phillips, 1997; Wieczorek and Zuber, 2004).

As the power spectra of planetary topography are ‘red’ (i.e.,

they possess more power at long wavelengths than short wave-

lengths), eqn [38] shows that the largest contribution to the

GTR will come inevitably from the lowest degrees. As an exam-

ple, approximately 80% of the GTR for theMoon is determined

by degrees less than 30. Since the topography of the ancient

highland crust of a planet is likely to be isostatically



Mercury crustal thickness (km)

Moon crustal thickness (km)

5 10 15 20 25 30 35 40 45

0 10 20 30 40 50 60

Figure 13 Crustal thickness models for Mercury and the Moon. Both images are in a Mollweide projection and are overlain by a gradient image derived
from the surface topography. The central meridian is 180�E for Mercury and 90�W for the Moon.
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compensated at these wavelengths, it is common to employ a

model based on the condition of Airy isostasy for these regions.

Assuming that the density of the crust is constant and using the

condition of equal mass in crust–mantle columns, it is straight-

forward to show using eqn [35] that the transfer function

between the potential and topographic coefficients is

Ql ¼
Clm

hlm
¼ 4prcR

2

M 2lþ1ð Þ 1� R�Tc

R

� �l
" #

[39]

where rc is the density of the crust and Tc is its mean thickness.

In practice, the GTR is determined by fitting the observa-

tions to a straight line within a region that is believed to be

consistent with the employed model. By utilizing a plot of

the predicted GTR versus Tc (obtained from eqns [37] to

[39]), the crustal thickness can then be estimated for a given
value of rc. Nevertheless, as the GTR is influenced strongly by

the longest wavelength components of the gravity and topog-

raphy, several aspects need to be considered carefully when

performing such an analysis.

It is first necessary to ensure that the entire signal of the

geoid and topography are governed by the same compensation

model. This can never be entirely satisfied, but certain anom-

alous long-wavelength features can sometimes be identified

and removed. For instance, most planets and satellites possess

significant rotational and/or tidal contributions to their

degree-2 shape, and these signatures can be minimized by

setting these coefficients to zero. For Mars, in addition to the

degree-2 rotational signature, the longest wavelength compo-

nents have been affected by the load and flexural response

associated with the Tharsis province (see Phillips et al., 2001;

Wieczorek and Zuber, 2004; Zuber and Smith, 1997).
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Furthermore, as the degree-1 potential terms are zero when the

gravitational field is referenced to the body’s center of mass,

any degree-1 topography that exists may need to be treated

separately. Finally, as the GTR is determined largely by the

longest wavelength components of the geoid and topography,

it is necessary that the region of interest be sufficiently large

when regressing the geoid and topography data.
10.05.6.2 Spectral Domain

Two major shortcomings associated with modeling the GTR are

that only a single wavelength-independent parameter is used

and the observed value could be biased by long-wavelength

features that are unrelated to the assumed compensation

model (such as lateral density anomalies in the mantle). An

alternative modeling approach that largely bypasses these con-

cerns is to model the relationship between the gravity and

topography for a certain region in the spectral domain. As

wavelength-dependent admittance and correlation functions

are obtained, it is in principle possible to invert for several

model parameters. The major shortcoming of this approach is

that low spectral resolutions of planetary datasets can be partic-

ularly limiting when performing localized spectral analyses, as

described in the following section. In this section, the basic

concepts involved with global spectral analyses are described.

Let us presume that the potential and topography coeffi-

cients are related via an equation of the form

Clm ¼Qlmhlmþ Ilm [40]

where Qlm is a linear nonisotropic transfer function and Ilm is

that portion of the potential not described by the model. For

simplicity, it will be assumed that Ilm is zero (though this

assumption will be relaxed later) and that the topography is

noise-free. Even though the aforementioned relationship is

inherently nonisotropic, it is often useful to work with the

power and cross power spectra of the gravitational field and

topography (Shh, Sgg, and Shg), which only depend upon spher-

ical harmonic degree l. The goal is to fit these three functions to

those obtained from an appropriate model. In order to remove

the model dependence of certain nuisance parameters, it is

convenient to work with ratios of these three cross power

spectra. Although several such ratios involving powers of

these are possible, only two will be independent, and it is

traditional to use the admittance and correlation spectra as

defined previously by eqns [28] and [46]. If a model describing

a planet’s gravity and topography is to be considered success-

ful, then it must satisfy both of these functions. If one or both

of these functions cannot be fit for a given degree, then this is a

clear indication that either the model assumptions are inap-

propriate for the region being investigated or the input datasets

are not sufficiently accurate.

If one treats the lithosphere of a planet as a thin elastic

spherical shell overlying a fluid interior (see Kraus, 1967), then

a simple relationship exists in the spectral domain between the

load on the lithosphere and its deflection (see Banerdt, 1986;

Beuthe, 2008; Turcotte et al., 1981; Willemann and Turcotte,

1981). If loading at only a single interface is considered (either

at or below the surface), then the transfer function in eqn [40]

is isotropic (i.e., independent of m). For this situation,
expressions for the admittance and correlation functions can

be written schematically as

Z lð Þ¼ f rc, rm, n, E, Te, Tc, z, g, Rð Þ [41]

g lð Þ¼ 1 or �1 [42]

where f denotes a functional dependence on the enclosed

parameters. In particular, the admittance function depends

explicitly on the crustal and mantle density, Poisson’s ratio n,
Young’s modulus E, the elastic thickness Te, the crustal thick-

ness, the depth of the load z, the magnitude of the gravitational

acceleration g, and the radius of the planet. For an isotropic

transfer function Ql, it is trivial to show that the degree corre-

lation function (in the absence of noise) is equal to either þ1

or �1, according to the sign of Ql. This model has been

amended by McGovern et al. (2002), Belleguic et al. (2005),

and Grott and Wieczorek (2012) to include in-phase loads

applied to and below the surface when the two are related

linearly by a degree-independent constant. Such models

would include an additional parameter L, which is a function

of the relative magnitudes of the surface and subsurface loads.

Geologic situations where surface and subsurface loads might

be perfectly correlated include isolated volcanoes and impact

basins.

An alternative loading model that includes loads applied to

and below the surface was developed by Forsyth (1985) in the

Cartesian domain (see also Banks et al., 2001). In contrast to

models that take the applied loads to be perfectly in phase, it

was assumed that the phase differences of the applied surface

and subsurface loads were random. Such an assumption might

be expected to be reasonable for continental cratons where

several geologic processes have operated over extended periods

of time (such as erosion, sedimentation, and magmatism). In

contrast to eqn [42], this model possesses a wavelength-

dependent correlation function.

A general model that allows for an arbitrary phase relation-

ship between the surface and subsurface loads has been devel-

oped by the author in spherical coordinates and can be

schematically described by the following equations:

Z lð Þ¼ f rc, rm, n, E, Te, Tc, z,L, al, g, Rð Þ [43]

g lð Þ¼ f 0 rc, rm, n, E, Te, Tc, z,L, al, g, Rð Þ [44]

where both f and f 0 represent generic functional dependencies.
The phase relationship of the two loads is described by an

additional parameter a that can possess values between 1 and

�1 for correlated and anticorrelated loads, respectively. The

expectation of a is given by the expression

al ¼
Xl

m¼�l
cosDlmh i

2lþ1ð Þ [45]

where Dlm denotes the phase difference between the two loads

and h 
 
 
 i is the expectation operator. For random phases, a is

zero, and the model degenerates to that of Forsyth (1985).

When the loads are perfectly in or out of phase by 0� or 180�,
a¼�1 and the model is analogous to that of McGovern et al.

(2002) and Belleguic et al. (2005). A similar model was devel-

oped contemporaneously by Kirby and Swain (2009) in

Cartesian geometry using a somewhat different approach and

then later by Audet (2013) in spherical harmonics.
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Figure 14 (Top) Free-air admittance, (middle) free-air correlation,
and (bottom) Bouguer correlation, for a flexure model with equal
magnitudes of applied surface and subsurface loads. Model parameters
correspond to the planet Mars, with Tc¼ z¼50 km, rc¼2900 kg m�3,
rm¼3500 kg m�3, and E¼1011 Pa. The solid lines correspond to the
case where the applied surface and subsurface loads have random
phases (i.e., a¼0), and the dashed lines correspond to the case where
these loads are partially correlated.
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Examples of the predicted free-air admittance and correla-

tion functions are shown in Figure 14 for several values of the

elastic thickness and phase parameter a. These models were

generated using parameters typical for the planet Mars, and the

magnitudes of the applied surface and subsurface loads were

chosen to be equal. As is seen, these curves are strong functions

of both the elastic thickness and a, and by considering both the

admittance and correlation, it may be possible to separate the

effects of the two. The free-air correlation function possesses

low values over a restrictive range of wavelengths that is
diagnostic of the elastic thickness. Furthermore, the free-air

correlation function is seen to approach unity at high degrees

(l≳100). In practice, if a decline of the free-air correlation is

observed with increasing degree, this is usually a good indica-

tor of a loss of fidelity with the employed gravitational model.

The predicted Bouguer correlation function is also shown for

the same model parameters, and this shows a behavior similar

to that predicted by the model of Forsyth (1985). It is noted

that the Bouguer correlation asymptotically approaches the

value of a with increasing degree. Whereas the Bouguer corre-

lation is useful for interpretive purposes, its use is not advo-

cated here because the Bouguer gravitational anomaly depends

critically upon the value chosen for the crustal density, and this

is in general not known a priori.

The preceding discussion assumed explicitly that the unmo-

deled gravitational signal Ilm in eqn [40] was identically zero.

As mentioned in Section 10.05.2.2, if Ilm and the topography

are uncorrelated, the expectation of the admittance will not be

affected by the presence of such a signal. However, the expec-

tation of the gravitational power spectrum will be biased

upward by an additive constant SII, and this will tend to bias

the correlation function downward. In particular, the observed

correlation function in the presence of noise is equal to

gobs lð Þ¼ g lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þS II lð Þ=Sgg lð Þp [46]

where g is the noise-free value.
Fortunately, any theoretical loading model can be easily

modified to incorporate an unmodeled signal Ilm that is

uncorrelated with the topography. It would be a simple mat-

ter to include SII as an inversion parameter in a generic load-

ing model such as eqn [44], though it is noted that this has

not yet been attempted in the literature. While Ilm is com-

monly assumed to be gravitational measurement noise, this

need not be the case. As described by McKenzie (2003),

massive erosion or sedimentation of a lithosphere possessing

surface and subsurface loads could give rise to a final state

where the surface is perfectly flat but where gravitational

anomalies are present. If this final state were taken as the

initial condition of a subsequent loading event, then the initial

gravitational signature (which is unrelated to the second

loading model) would be expected to be uncorrelated with

the subsequently generated topography.

Finally, it is important to reemphasize that if a given model

of lithospheric loading is an accurate description of reality, it

must fit both the admittance and coherence functions. If this

cannot be done, then either the model or data must be inac-

curate. Unfortunately, the vast majority of published investiga-

tions that use Forsyth-like loading models employ only the

admittance or coherence function. The values of inverted

parameters from such studies, while perhaps correct, need

confirmation by analysis of the other function. Notable excep-

tions include the papers by Forsyth and coworkers (Bechtel

et al., 1990, 1987; Ebinger et al., 1989; Forsyth, 1985; Pérez-

Gussinyé et al., 2004; Phillips, 1994; Zuber et al., 1989). Sim-

ilarly, many published investigations that employ a loading

model with only surface or subsurface loads also ignore the

correlation function, even though such models explicitly

require this to be �1 when Ilm is zero.
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10.05.7 Localized Spectral Analysis

The spherical harmonic functions represent a global basis, and

the power spectrum as defined by eqn [9] is necessarily repre-

sentative of the global properties of the function. In geophys-

ics, however, it is reasonable to suspect that the spectral

properties of the gravity and topography will vary as a function

of position. For example, the elastic thickness may differ

among geologic provinces as a result of their unique histories.

Alternatively, it might arise that the data are known only

locally and that one would like to estimate the power spectrum

based exclusively upon these data. In this section, twomethods

are discussed that address these issues: One uses orthogonal

windowing functions to form a multitaper spectral estimate,

and the other uses spherical wavelets.
10.05.7.1 Multitaper Spectral Analysis

One way of obtaining localized estimates of a function’s power

spectrum is to first multiply the data by a localizing window

(commonly referred to as a data taper) and then expand this

windowed function in spherical harmonics (for a detailed

discussion in the Cartesian domain, see Percival and Walden,

1993). However, as a result of the windowing procedure, the

resultant power spectrum will differ from the true value. For

the case where the input field is stationary and the spherical

harmonic coefficients are governed by a zero-mean stochastic

process, it can be shown that the expectation of the windowed

power spectrum is related to the global spectrum by the fol-

lowing relation (Wieczorek and Simons, 2005, 2007):

SFG lð Þh i¼
XL
j¼0

Shh jð Þ
Xlþj

i¼jl�jj
Sfg ið Þ Cl0

i0j0

� 	2
[47]

Here, h represents an arbitrary window bandlimited to

degree L, F, and G are the windowed fields hf and hg, respec-

tively, and the last symbol in parentheses is a Clebsch–Gordan

coefficient (these are related to the Wigner 3� j symbols and

are proportional to the integral of three Legendre functions; see

Varshalovich et al., 1988). The expectation of the windowed

power spectrum SFG is seen to be related to the global spectrum

by a smoothing operation reminiscent of a convolution.

For a localized spectral analysis, the question arises natu-

rally as to what form the localizing window should take. In

order to spatially localize the data, it is clear that the amplitude

of the window (or its power) should be near zero outside the

region of interest. Furthermore, as a result of the convolution-

like relationship between the global and windowed spectra,

the bandwidth L of the window should be as small as possible

in order to limit this spectral smoothing. Slepian and

coworkers (see Slepian, 1983) posed and solved this problem

in Cartesian geometry by finding those windows whose power

was concentrated optimally in a specified region. Using this

same criterion, Wieczorek and Simons (2005) and Simons

et al. (2006) solved for those bandlimited windows on the

sphere that are concentrated optimally within a spherical cap.

The case of arbitrary regions was treated by Simons et al.

(2006), and the case where data are absent at the poles (the

polar gap problem) was treated by Simons and Dahlen (2006).
This optimization problem reduces to a simple eigenvalue

equation whose solution yields a family of (Lþ1)2 orthogonal

data tapers; the quality of the concentration is given by the

corresponding eigenvalue, l, which is the fractional power of

the function within the region of interest. As an example, for a

concentration region specified by a spherical cap with an angu-

lar radius of 30�, as shown in Figure 15, 34 windows exist with

a bandwidth L¼29 that concentrate more than 99% of their

power within the region of interest.

Though it is common to use a single localization window

when performing a localized spectral analysis, the use of mul-

tiple tapers, as pioneered by Thomson (1982) in the Cartesian

domain, can be highly advantageous. The multitaper estimate

is defined as the weighted sum of spectra obtained from using

K well-localized orthogonal tapers:

S
mtð Þ
FF lð Þ¼

XK
k¼1

akS
kð Þ
FF lð Þ [48]

The values of the weights are usually assigned to be either

1/K or proportional to 1/lk, but these can be chosen to also

minimize the variance of the estimate (Wieczorek and Simons,

2007). The benefits of using a multitaper estimate are several

fold. First, the cumulative energy of orthogonal tapers will

be nearly constant across the region of interest, whereas the

energy of any single window will nonuniformly cover the

concentration region. Because of this, a multitaper average

will be more representative of the data than that of a single

taper. Second, while it is generally not possible to obtain the

expectation of the localized spectrum since there is usually

only a single field available for analysis, the spectral estimates

obtained from orthogonal tapers are nearly uncorrelated, and

their average can be considered as an approximation of the

expectation. Finally, by using multiple tapers, it is possible to

make an estimate of the uncertainty associated with a given

spectral estimate; this is expected to decrease as approximately

1=
ffiffiffiffi
K

p
(Wieczorek and Simons, 2005, 2007).

In performing a localized spectral analysis, there are several

factors that need to be considered. First, it is noted that if the

fields f and g of eqn [47] are known to a maximum spherical

harmonic degree of Lfg, then only the first Lfg�L windowed

spectral estimates are reliable. Second, those localized spectral

estimates with degrees less than L are heavily biased and possess

relatively large uncertainties, making these of little use for geo-

physical analysis. Third, while a multitaper spectral analysis is

generally preferable to using a single taper, the aforementioned

two concerns present serious limitations when working with the

relatively low-resolution gravity fields of Mercury, Venus, and

Mars. Depending on the size of the concentration region, it may

be infeasible to use the larger bandwidths that are required for

obtaining several well-concentrated tapers.

Finally, when comparing model results to observations, it is

emphasized that the two must be windowed in the same

manner (e.g., Pérez-Gussinyé et al., 2004). If the analysis is

performed by generating forward models of the gravity field

using the known topography, then it is necessary to localize

these functions in the samemanner as the data. Alternatively, if

no explicit expression exists forQlm (as in the model of Forsyth

(1985) and that presented in Section 10.05.6.2, both of which

are statistical in nature), then it is necessary to window the
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Figure 15 Spatial rendition of those functions that are near-perfectly concentrated within a spherical cap of angular radius 30� with a spherical
harmonic bandwidth L¼29. The dotted circle corresponds to the localization region, and the blue and red colors correspond to negative and
positive values, respectively. For these parameters, the total number of functions with l>0.99 is equal to 34. Each nonzonal function has a twin that is
rotated by 90�/m. Image reprinted from Wieczorek MA and Simons FJ (2007) Minimum-variance multitaper spectral estimation on the sphere.
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predicted (cross) power spectra using eqn [47] before calculat-

ing the theoretical admittance and correlation functions.

10.05.7.2 Wavelet Analysis

An alternative approach of performing a localized spectral

analysis is to use spherical wavelets. A wavelet analysis differs

from amultitaper analysis in that (1) the function is multiplied

by a wavelet of a given size and integrated over all space, as

opposed to being multiplied and then expanded in spherical

harmonics, and (2) the wavelet scalogram (the analog of the

power spectrum) is a function of the wavelet scale (i.e., size)

and not spherical harmonic degree. Whereas the multitaper

spectral analysis approach is best when the function is known

to be locally stationary within the analysis region, wavelet

analyses are better suited to truly nonstationary processes.

The wavelet transform for real functions is defined as the

inner product of a function f with a wavelet c of scale s centered

at position r̂ and with angular orientation g about this axis:

~f s, r̂, gð Þ¼
ð
O
f y0, f0ð Þcs, r̂,g y0, f0ð ÞdO0 [49]

The wavelet transform can be defined either to be

continuous in scale s or to be composed of discreet scales. By

expressing both f and c in spherical harmonics,
~f s, r̂, gð Þ¼ 4p
XL
l¼0

Xl
m¼�l

f lmclm s, r̂, gð Þ [50]

where L is the smaller of the spherical harmonic bandwidth of f

and c (the product is zero beyond the bandwidth of either

function). If the wavelets are zonal functions, the wavelet

transform is

~f s, r̂ð Þ¼ 4p
XL
l¼0

Xl
m¼�l

f lmCl sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2lþ1

r
Ylm y, fð Þ [51]

where Cl are the spherical harmonic coefficients of the zonal

wavelet centered at the north pole. For zonal wavelets, the

wavelet transform is equivalent to the spatial convolution of f

and c. The wavelet transform can be calculated rapidly every-

where using fast Fourier transform techniques and Wigner

rotation matrices (Wandelt and Gòrski, 2001).

The wavelet cross scalogram of two real functions f and g is

defined as

Pfg s, r̂, gð Þ¼~f s, r̂, gð Þ~g s, r̂, gð Þ [52]

If it is assumed that the two functions f and g are stochastic

stationary processes, it can be shown that the expectation of

this expression is related to the power spectrum of the wavelet

and the cross power spectrum of f and g by

http://dx.doi.org/10.1007/s00041-006-6904-1
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Pfg sð Þ
 �¼ 4pð Þ2
XL
l¼0

Sfg lð ÞSCsCs
lð Þ

2lþ1
[53]

where SCsCs
is the power spectrum of the wavelet of scale s. This

fundamental relation is analogous to eqn [47] as used in

localized spectral analyses and quantifies how the power spec-

trum of the data is modified by the window spectrum when

forming the wavelet cross scalogram.

In general, wavelets should have a zero mean, they should

be localized in space in order to study nonstationary processes,

and they should be localized in the spectral domain in order to

best extract the frequency content of the signal (cf. eqn [53]).

A multitude of wavelet families have been constructed, includ-

ing those that are zonal (Chambodut et al., 2005; Fengler et al.,

2007; Freeden and Windheuser, 1997; Guilloux et al., 2009;

Holschneider et al., 2003; Holschneider and Iglewska-Nowak,

2007; Li, 1999; Michel and Wolf, 2008; Panet et al., 2011;

Schmidt et al., 2007; Wiaux et al., 2007) and directional

(Audet, 2011, 2013; McEwen et al., 2007). Once the family

of wavelets has been constructed for each scale s, it is straight-

forward to construct the wavelet transform. Nevertheless, the

best manner to construct a family of wavelets on the sphere is

not trivial. The biggest problems consist of how to discretize

the wavelets as a function of scale, how to most optimally

represent the data by the smallest number of wavelet coeffi-

cients as possible, and how to minimize correlations between

the wavelet coefficients (e.g., Freeden and Windheuser, 1997;

Narcowich and Ward, 1996). A perhaps more daunting prob-

lem is deciphering the spherical wavelet literature itself: many

of these papers are highly mathematical, the notation is highly

variable among authors, and the papers span a wide range of

disciplines and journals.
10.05.8 Summary of Major Results

10.05.8.1 Earth

The gravity and topography of Earth have been used exten-

sively to decipher the rheological properties of the crust and

upper mantle. The literature is voluminous, and the reader is

referred to several reviews in volume 8 of this series, Watts

(2001), and the references in the papers cited in the succeeding

text. Here, only a few subjects will be touched upon that bear

relevance to investigations of Venus, Mars, Mercury, and the

Moon. These include modeling of the elastic thickness of the

oceanic and continental lithosphere, inelastic flexural model-

ing, and the modeling of dynamic topography and geoid sig-

natures associated with mantle convection.

Flexural modeling of the oceanic lithosphere is relatively

simple in that loading is primarily a result of the construction

of isolated shield volcanoes. Elastic thickness estimates have

been obtained by modeling the topographic and gravity signa-

tures of these features, and it is widely accepted that the elastic

thickness is dependent primarily upon the age of the plate at

the time of loading, with Te being less than about 45 km (for a

review, see Watts, 2001). In particular, a plot of the elastic

thickness versus age of the lithosphere at the time of loading

resembles the time dependence of the depth to an isotherm

(�300–600 �C) predicted from a plate cooling model (see
Watts and Zhong, 2000). This suggests that the flexural signa-

ture has been ‘frozen’ into the lithosphere as it cooled and that

subsequent long-term viscoelastic relaxation has been rela-

tively unimportant. Nevertheless, a description of the initial

short-term subsidence of the lithosphere (i.e., the first few 10 s

of ka) requires the use of a viscoelastic model, and given the

relatively restricted age range of oceanic lithosphere

(<200 Ma), it is difficult to discern if viscoelastic relaxation

would be important at longer timescales. It is important to

note that most flexural modeling of features on the other

terrestrial planets has been for loads that were emplaced on

the lithosphere over a billion years ago.

Investigations of the continental elastic thickness have been

more contentious. Part of the difficulty arises because the

importance of subsurface loading, and the phase relationship

of the surface and subsurface loads, is not known a priori (see

Section 10.05.6.2). A loading model was developed by Forsyth

(1985) that took into account both surface loading and sub-

surface loading under the assumption that the two were uncor-

related, and application of this method has yielded elastic

thicknesses in the broad range from about 5 to 150 km

(Bechtel et al., 1990, 1987; Ebinger et al., 1989; Forsyth,

1985; Kirby and Swain, 2009; Pérez-Gussinyé et al., 2004,

2009; Zuber et al., 1989). There is some controversy as to

whether the values greater than �25 km are reliable (compare

McKenzie, 2003 with Watts and Burov, 2003), but this debate

will not be settled definitively until investigators fit both the

admittance and correlation functions simultaneously while

taking into account partially correlated loads and unmodeled

gravitational signals (see Section 10.05.6.2). Furthermore,

some studies that have inverted for the elastic thickness using

multitaper spectral analysis and wavelet techniques have done

so using a methodology that is not entirely correct. In particu-

lar, as both windowing and wavelet approaches return a mod-

ified form of the power spectrum (cf. eqns [47] and [53]), it is

necessary to compare these modified spectra with suitably

modified theoretical spectra, which is not always done. Regard-

less, these methods have convincingly shown that the elastic

thickness of some continental regions is not always isostropic

(e.g., Kirby and Swain, 2006; Simons et al., 2003, 2000), which

is an assumption common to most studies.

The majority of investigations that model lithospheric flex-

ure assume that the lithosphere is perfectly elastic, but elastic

stresses are often predicted to be in excess of the strength of

geologic materials. A simple modification to the elastic flexure

equation that takes this into account is to replace the elastic

bending moment–curvature relationship with one that is

based upon an elastic–perfectly plastic (EP) model of the

lithosphere’s yield strength (e.g., Burov and Diament, 1995;

Mueller and Phillips, 1995). In particular, the strength of the

upper crust is limited by brittle failure, and stresses in the lower

crust and mantle are limited by their ductile strength for a

specified strain rate. Predicted flexural profiles are time-

invariant and can sometimes differ significantly from those of

the perfectly elastic model. As the ductile strength is

temperature-dependent, these results are sensitive to the

assumed lithospheric temperature gradient.

A more realistic model of lithospheric deformation uses a

time-dependent elastoviscoplastic (EVP) formulation (e.g.,

Albert and Phillips, 2000; Albert et al., 2000; Brown and
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Phillips, 2000). The main advantage of these models is that the

strain rates are calculated explicitly, as opposed to assumed as

in the EP models. Though the best-fit EP and EVP flexural

profiles can be quite similar, it is not clear a priori how one

should estimate the characteristic strain rate that is required for

the EP model without running a full EVP simulation (Albert

et al., 2000). The EVP models show that significant decoupling

of stresses may occur between the crust and mantle if the lower

crust is sufficiently weak (e.g., Brown and Phillips, 2000).

When this occurs, the effective elastic thickness decreases; the

exact value is highly dependent upon the crustal thickness,

load magnitude, and assumed rheology of the crust and man-

tle. In contrast, when the lower crust is strong, the maximum

achievable effective elastic thicknesses are consistent with the

depth of an �700 �C isotherm obtained from a lithospheric

cooling model. Flexural modeling of a volcano growing on a

cooling lithosphere shows that the effective elastic thickness is

‘frozen’ into the lithosphere shortly after volcanic construction

is complete (Albert and Phillips, 2000).

Finally, in addition to near-surface crustal thickness and

density variations, significant gravity and topography signa-

tures can be generated by dynamic processes in the mantle,

such as beneath hot spots and subduction zones. Though there

are few, if any, convincing examples of plate subduction on the

other terrestrial planets, hot spots similar to Earth are believed

to exist on both Venus andMars. Dynamic modeling of plumes

shows that the major variable controlling the surface gravity

and topography signatures is the depth dependence of the

mantle viscosity. In the absence of a shallow low-viscosity

asthenosphere, convective stresses generated at depth are

coupled efficiently to the surface, generating large signals and

large corresponding effective depths of compensation. How-

ever, the inclusion of a shallow low-viscosity zone can reduce

these signatures significantly, giving rise to shallower apparent

depths of compensation (e.g., Ceuleneer et al., 1988; Robinson

and Parsons, 1988). Joint inversions utilizing mantle density

anomalies from seismic tomography and estimates for the

dynamic topography signal imply the existence of a low-

viscosity zone somewhere in the upper mantle and a gradual

increase in viscosity with depth by an order of magnitude in

the lower mantle (e.g., Panasyuk and Hager, 2000).
10.05.8.2 Venus

Our knowledge of Venus has dramatically improved since the

acquisition of gravity, topography, and SAR imagery by the

Magellan mission between 1990 and 1994. The size and bulk

density of Venus were known beforehand to be similar to that

of Earth, but this planet was found to differ dramatically in that

it lacks any clear sign of plate tectonics. A major unanswered

question is how this planet loses its internal heat and whether

or not this process is episodic or uniform in time. Geophysical

analyses have been used to constrain the crustal and elastic

thickness, and the latter has been used to place constraints on

the temperature gradient within the lithosphere. Reviews con-

cerning the geophysics of this planet can be found in Phillips

et al. (1997), Grimm and Hess (1997), Schubert et al. (1997),

and Nimmo and McKenzie (1998).

The crustal plateaus of Venus have generally low-amplitude

gravitational and topographic signatures within their interiors
and low GTRs. With the exception of Ishtar Terra, these regions

are potential candidates for being isostatically compensated.

Assuming that the surface topography is compensated at a

single interface, Grimm (1994) obtained best-fit apparent

depths of compensation between 20 and 50 km for Alpha,

Tellus, Ovda, and Thetis Regiones. These values are plausibly

interpreted as representing the depth of the crust–mantle inter-

face. Analyses of GTRs by Kucinskas and Turcotte (1994),

Moore and Schubert (1997), and James et al. (2013) obtained

zero-elevation crustal thicknesses between about 40 and 80 km

for Alpha, Ovda, Tellus, and Thetis Regiones. If any portion of

the geoid and topography were to result from Pratt or thermal

compensation, the obtained crustal thicknesses would repre-

sent an upper bound. A spectral admittance study by Phillips

et al. (1997) obtained a slightly thinner crustal thickness of

38�9 km for the region of Atla Regio (see also Phillips, 1994).

In contrast to the majority of the highland plateaus, large

apparent depths of compensation and GTRs have been found

for the volcanic rises (Kucinskas and Turcotte, 1994; Moore

and Schubert, 1995, 1997; Smrekar, 1994) and Ishtar Terra

(Grimm and Phillips, 1991; Hansen and Phillips, 1995;

Moore and Schubert, 1997). These values are not consistent

with compensation occurring solely by crustal thickening, but

require some form of dynamic support from the mantle via

stresses induced by ascending mantle plumes (e.g., Vezolainen

et al., 2004) or substantial thinning of a thick (�300–600 km)

thermal lithosphere (Kucinskas and Turcotte, 1994; Moore and

Schubert, 1995, 1997; Orth and Solomatov, 2011). If a low-

viscosity asthenosphere were present at shallowmantle depths,

as is the case of Earth, the predicted GTRs and apparent depths

of compensation resulting from dynamic support would be

considerably smaller than measured as a result of the decou-

pling of stress between the lithosphere and mantle (e.g., Kiefer

and Hager, 1991; Kiefer et al., 1986). This seems to imply that

in contrast to Earth, Venus lacks a low-viscosity zone (Huang

et al., 2013; Pauer et al., 2006), which is most likely a result of a

volatile-poor mantle. Modeling by Pauer et al. (2006) suggests

that the viscosity of the Venusian mantle could increase by a

factor of about 10–80 from the upper to lower mantle, similar

to that of Earth. A strong coupling of stress between the litho-

sphere and convecting mantle is the likely cause of the high

spectral correlation between gravity and topography for the

lowest spherical harmonic degrees of Venus (contrast Figures 2

and 4).

An additional constraint concerning the thickness of the

Venusian crust is related to its compositional buoyancy. If the

crust were basaltic in composition, this material would

undergo a phase transition at high pressure to the more

dense mineral assemblage of eclogite (e.g., Grimm and Hess,

1997). This material could potentially delaminate from the

base of the crust as a result of its high density, and the depth

of this phase transition might thus constrain the maximum

achievable crustal thickness. For a MORB composition, the

eclogite phase transition is predicted to occur at depths of

�70–120 km (see Ghent et al., 2004) for linear temperature

gradients of 5 and 15 K km�1, respectively.

The crustal thickness model presented in Figure 12 has

thicknesses near 70 km only in the highland plateaus of Ishtar

Terra and Ovda and Thetis Regiones, suggesting that crustal

delamination could have occurred in these regions. The
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highland crust is almost exactly twice as thick as the lowland

crust, which could potentially arise by the obduction of one

plate over another. In contrast to Mercury, Mars, and the

Moon, no large impact basins are found on this planet as a

result of the relatively young age of its surface (�240 Ma; Le

Feuvre and Wieczorek, 2011). This crustal thickness model

assumed an average thickness of 35 km and did not consider

density anomalies beneath the crust–mantle interface. An alter-

native model was developed by Orth and Solomatov (2012)

who assumed that variations in lithospheric thickness were

isostatically compensated and that the remaining signal was a

result of isostatic variations in crustal thickness. James et al.

(2013), in contrast, constructed a global crustal thickness

model by assuming that the observed surface topography and

gravitational potential were a result of isostatically compen-

sated crust and dynamic relief arising from mantle density

anomalies below an elastic lid.

Elastic thickness estimates have been obtained for a variety of

features based exclusively on topographic profiles that are indic-

ative of flexure. The benefit of using topography alone is that

small features can be investigated that are not resolved in the

current gravitymodel. Elastic thicknesses of 11–25 kmhavebeen

obtainedbymodeling the FreyjaMontes foredeep (Sandwell and

Schubert, 1992; Solomon and Head, 1990) and �10–60 km

for potential flexural bulges outboard of coronae (Sandwell

and Schubert, 1992). Additional features modeled by Johnson

and Sandwell (1994) yield elastic thicknesses of 10–40 km, and

potential subduction-related sites possess a range of 6–45 km

(Schubert and Sandwell, 1995). Predicted stresses are largest

where the plate curvature is greatest, and faulting is generally

visible in theMagellan SAR imagery at these locations.Modeling

by Barnett et al. (2002) yielded best-fit elastic thicknesses that are

consistent with the aforementioned studies. Modeling the loca-

tion of concentric faulting around Nyx Mons (a volcano in Bell

Regio) implies a best-fit elastic thickness of�50 km (Rogers and

Zuber, 1998). It is important to note that the assumption of a

perfectly elastic rheology may be grossly inappropriate for some

features. For instance, the magnitude of the flexure-induced

bulge south of Artemis Chasma implies that significant yielding

has occurred within the lithosphere, and inelastic modeling by

Brown and Grimm (1996) shows that a significant compressive

in-plane force is required at this locale.

The elastic thickness has also been estimated for various

regions of Venus through a combined analysis of gravity and

topography data in the spectral domain. However, the majority

of these investigations have fit only the admittance or coher-

ence functions, but not both simultaneously (e.g., Anderson

and Smrekar, 2006; Barnett et al., 2000, 2002; Hoogenboom

et al., 2005, 2004; Lawrence and Phillips, 2003; McKenzie,

1994; McKenzie and Nimmo, 1997; Simons et al., 1994,

1997; Smrekar, 1994; Smrekar et al., 2003; Smrekar and

Stofan, 1999). The robustness of the inverted parameter values,

the fidelity of the gravity model, and the appropriateness of the

loading model are all difficult to assess in these studies. One

exception is that of Phillips (1994) who investigated the lith-

ospheric properties of Atla Regio, which is believed to be an

active hot spot based on its geomorphology and previously

determined large apparent depths of compensation. Using the

loading model of Forsyth (1985), which assumes uncorrelated

surface and subsurface loads, it was shown that a single mode
of compensation could not explain the entire wavelength range

of the admittance and coherence functions. An inversion uti-

lizing only the short wavelengths yielded a crustal thickness of

30�13 km and an elastic thickness of 45�3 km. Whereas

surface loading by the volcanic constructs in this area domi-

nates, about 10% of the load is required to be located at

shallow depths within the crust. For the long-wavelength

range, only the depth of the subsurface load was well con-

strained with a value near 150 km, and the elastic thickness

was constrained only to be less than 140 km.

It is possible to place constraints on the crustal temperature

gradient at the time of loading either by using the obtained

elastic thicknesses or by forward modeling of inelastic flexure.

The basic approach is tomatch the bending moment implied by

the elastic model to that predicted by an inelastic rheology

(McNutt, 1984). The obtained temperature gradient estimates

lie in the rather broad range of 3–26 K km�1 (Brown and

Grimm, 1996; Johnson and Sandwell, 1994; Phillips, 1994;

Phillips et al., 1997; Sandwell and Schubert, 1992), but the

majority of these lie on the low end, between �4 and

10 K km�1. This is considerably lower than the expected Earth-

scaled temperature gradient of �15 K km�1 (e.g., Phillips,

1994), especially when considering that some of these estimates

were obtained where an underlying mantle plume might be

expected. Though such calculations are critically dependent on

the validity of the inelastic strength model, the assumed strain

rate, and the depth dependence of temperature, these results

seem to imply that the background heat flow of Venus is much

less than would be expected by analogy to Earth. Such an

interpretation is consistent with a model in which the Venusian

lithosphere formed catastrophically �500–1000 Mya and has

since been cooling conductively (cf. Moresi and Solomatov,

1998; Parmetier and Hess, 1992; Turcotte, 1995). However,

such a model is not required, or even preferred, by the cratering

history of the Venusian plains (Hauck et al., 1998).
10.05.8.3 Mars

Following the acquisition of high-resolution gravity and topog-

raphy data from the MGS and Mars Odyssey missions, a num-

ber of studies have been published bearing on the crustal and

lithospheric structure of Mars. These investigations have placed

constraints on the thickness of the Martian crust, the elastic

thickness, and the crustal density and also imply the existence

of dynamic support of topography and buried mass anomalies.

Reviews concerning the gravity, topography, and crust of Mars

can be found in Esposito et al. (1992), Banerdt et al. (1992),

Zuber (2001), Wieczorek and Zuber (2004), Nimmo and

Tanaka (2005), and Grott et al. (2013).

The average thickness of the Martian crust has been con-

strained by the analysis of GTRs over the ancient southern

highlands. After removing the long-wavelength flexural and

load signatures associated with the Tharsis province, a zero-

elevation thickness of 57�24 km was obtained under the

assumption of Airy isostasy (Wieczorek and Zuber, 2004).

This range of values is consistent with estimates based upon

the viscous relaxation of topography (Nimmo and Stevenson,

2001; Zuber et al., 2000b) and geochemical mass-balance

arguments, both of which require the crust to be less

than �100 km thick (see Wieczorek and Zuber, 2004). Crustal



184 Gravity and Topography of the Terrestrial Planets
thickness modeling further requires the mean thickness of the

crust to be greater than about 25 km (Pauer and Breuer, 2008).

A global model of the crustal thickness of Mars has been

constructed by Neumann et al. (2004) by assuming a mean

thickness of 45 km (see Figure 12). If the assumption of a

constant density crust is correct, the crust of the southern

highlands is predicted to be thicker by about 30 km than the

northern lowlands. However, if the northern lowland crust is

denser than the southern highlands, as implied by the results

of Belleguic et al. (2005), then the actual crustal thickness

difference could be significantly less. The Tharsis province is

seen to possess a relatively thick crust, indicative of prolonged

volcanic construction, whereas the crust beneath the major

impact basins is thinned and in some places nearly absent.

Localized spectral admittance and correlation spectra have

been modeled in spherical coordinates for various regions

using the techniques of Simons et al. (1997) and Wieczorek

and Simons (2005). In the investigations of McGovern et al.

(2002, 2004), Belleguic et al. (2005), Wieczorek (2008), Grott

and Wieczorek (2012), and Beuthe et al. (2012), a thin elastic

spherical shell loading model was employed that depended

upon the shell’s elastic thickness, the load density, the crustal

density, and the ratio of the magnitudes of subsurface and

surface loads, which were assumed to be in or out of phase

by 0� or 180�. When the load density differs from that of the

crust, the methodology of Belleguic et al. (2005) is more

accurate, and their results are here emphasized.

Of all the parameters considered by Belleguic et al. (2005)

when modeling the major Martian volcanoes, the load density

is in general the best constrained. For the Tharsis Montes and

Elysium rise, values of �3200�100 kg m�3 were obtained.

After accounting for a few-percent porosity, this range is con-

sistent with density estimates of the Martian meteorites, which

are thought to be derived from these regions based on their

young ages. Elastic thickness estimates are somewhat variable

but were found to lie between about 50 and 100 kmwhen only

surface loads were considered. However, when both surface

and subsurface loads were modeled, only upper and lower

bounds could be specified for most regions. The crustal density

was constrained only beneath the Elysium rise (which is

located in the northern lowlands) and was found to be identi-

cal to the density of the superposed load. Combined modeling

of GTRs and crustal thickness suggest a maximum density of

about 3020 kg m�3 for the southern highlands, which is con-

sistent with the value of 3000 kg m�3 suggested by Neumann

et al. (2004) based on rock compositions at the Mars Path-

finder site. If the crustal density beneath the Elysium rise is

representative of the northern lowlands, then this implies a

hemispheric dichotomy in crustal composition. This result is

consistent with geochemical maps obtained from the Mars

Odyssey gamma-ray spectrometer that show the northern low-

lands possess a higher iron concentration than the southern

highlands (Taylor et al., 2006). The low elevations of the

northern plains could thus be a partial result of Pratt compen-

sation. Finally, the inclusion of less dense subsurface loads

(either compositional or thermal in origin) improved the mis-

fit between the modeled and observed admittance functions.

In the localized admittance study of Beuthe et al. (2012), two-

stage loading models were employed to investigate how the

elastic thickness and load density varied with time. This loading
model could fit the data and models with single-stage top and

bottom loading, calling into question the necessity of subsurface

loading. Using similar localized admittance techniques, density

and elastic thickness have been estimated at other regions on the

planet. For the isolated low-relief volcano Tyrrhena Patera, Grott

and Wieczorek (2012) obtained a density between 2960 and

3500 kg m�3, which is consistent with the Tharsis and Elysium

volcanoes, and an elastic thickness that is less than 28 km. Zuber

et al. (2007) andWieczorek (2008) investigated the ice-rich south

polar layered deposits and found densities close to 1250 kg m�3.

Elastic thickness estimates for other locales have been deter-

mined using a variety of techniques, but these generally contain a

larger number of assumptions. Modeling of the geologically

inferred flexural moat of the northern polar cap suggests an

elastic thickness between 60 and 120 km ( Johnson et al.,

2000). Faults surrounding the Isidis impact basin imply elastic

thicknesses between 100 and 180 km at the time of loading

(Ritzer and Hauck, 2009). If the topography of the dichotomy

boundary is flexural in origin, with loading in the northern

plains, then elastic thicknesses of �31–36 km are implied

(Watters, 2003). Cartesian admittances were analyzed in several

other studies (Hoogenboomand Smrekar, 2006;McKenzie et al.,

2002;Milbury et al., 2009; Nimmo, 2002), but the validity of the

loading model was not quantified by calculating theoretical

correlation functions. A summary of how elastic thickness con-

strains Martian heat flow can be found in Grott et al. (2013).

One distinctive feature of Mars is the large geoid and topog-

raphy signals associated with the Tharsis province (e.g.,

Phillips et al., 2001). Two possible end-member explanations

for this observation are either that it is a result of voluminous

extrusive lavas that are partially supported by the lithosphere

or that it is a result of dynamic topography associated with an

underlying plume. Viscoelastic modeling of the geoid and

topography response to internal buoyant loads implies that a

plume is incapable of producing the totality of the observed

signals (Roberts and Zhong, 2004; Zhong, 2002). By modeling

the contributions of both surface and plume signals with a

method that approximates a viscoelastic response, the degree-

2 and degree-3 GTRs imply that a plume can account for only

�15% and 25% of the geoid and topography signals, respec-

tively. Using a modified approach that includes all spherical

harmonic degrees, Lowry and Zhong (2003) inverted for the

relative contributions of surface and internal loads and found

that a plume could account only for a maximum of �25% and

50% of the observed geoid and topography, respectively.

Finally, it is noted that buried mass anomalies can be investi-

gated by examinationof the residual gravity field after subtraction

of an appropriate reference model. By modeling the gravity field

of the SyrtisMajor region by surface loading of an elastic shell, an

unmodeled localized density anomaly was found beneath this

volcanic province. The amplitude of this unmodeled anomaly is

consistent with the presence of dense cumulates of an extinct

magma chamber (Kiefer, 2004). Using a similar technique, bur-

iedmass anomalies have also been inferred along the portions of

the dichotomy boundary (Kiefer, 2005).
10.05.8.4 Mercury

Our understanding of Mercury is currently being revolution-

ized by the analysis of data from the MESSENGER spacecraft.



Gravity and Topography of the Terrestrial Planets 185
At the time of this writing, the initial analyses have just been

published, and more result will soon follow.

Mercury is somewhat similar to the Moon in that its surface

records billions of years of impact cratering. One striking

aspect concerning the topographic expression of the largest

impact basins is that they are not as topographically distinct

as those found on the Moon and Mars. Many of these basins

have shallower than expected depths (Mohit et al., 2009), and

others have been deformed topographically. One clear exam-

ple of basin deformation that postdates the impact event is the

topographic bulge in the northern portion of the Caloris basin

that is higher than most of its topographic rim (Zuber et al.,

2012). Together, these observations suggest some form of

modification by either mantle convection or crustal viscous

relaxation (Mohit et al., 2009).

The Caloris impact basin is clearly associated with a positive

gravitational anomaly, similar to the mascon basins on the

Moon. Few other basins have corresponding gravitational

anomalies, but this could be an artifact of the low resolution

of the current gravity model. Crustal thickness modeling shows

that the Caloris, Budh, and Sobkou basins are associated with a

thinned crust (Smith et al., 2012). However, little is known

about the average thickness of the crust, which is important for

understanding the bulk silicate composition of the planet.

Estimates of the depths of faulting constrain the depth of the

brittle–ductile transition, and when combined with an esti-

mate of the melting temperature of the base of the crust, an

average crustal thickness less than 140 km is required (Nimmo

and Watters, 2004).

The lithospheric thickness of Mercury appears to have var-

ied over time. Many regions of ancient high-standing topogra-

phy do not possess any significant gravitational anomaly,

indicating that they were likely in a state of isostatic compen-

sation when they formed. In contrast, a positive gravitational

anomaly is associated with a domical rise in the northern

lowlands, and modeling of this feature implies that the litho-

sphere had an elastic thickness of 70–90 km at the time of its

formation (Smith et al., 2012). As a result of Mercury’s eccen-

tric orbit and 3/2 spin–orbit resonance, the average tempera-

ture of the surface has strong variations in both latitude and

longitude, with two hot ‘poles’ being located at 0� and 180� on
the equator. These temperature variations are predicted to give

rise to long-wavelength variations in the thickness of the lith-

osphere, with variations in the mechanical thickness approach-

ing 80 km between �90�N and the equatorial hot poles

(Williams et al., 2011).
10.05.8.5 The Moon

Analyses of the gravitational field of the Moon have been

hindered historically by the lack of direct tracking data over

the lunar farside hemisphere. This problem was rectified only

recently by the collection of four-way tracking data from the

Kaguya (2007) mission and intersatellite range-rate measure-

ments from the Gravity Recovery and Interior Laboratory

(2011) mission. Together with altimetric data and stereo imag-

ery collected by the LRO and Kaguya missions, it can be said

that the gravity and topography of the Moon are known better

in a global sense than any other terrestrial object. These data

have permitted a wide range of investigations, including the
mapping of crustal thickness variations, studies of giant impact

basins, and the mapping of subsurface density anomalies.

A comprehensive review of results predating the GRAIL, LRO,

and Kaguya missions can be found in Wieczorek et al. (2006).

The observed gravity signal at short wavelengths, where

lithospheric flexure is unimportant, should be almost entirely

a result of relief along the surface (cf. Figure 14). Wieczorek

et al. (2013) used this observation to estimate the bulk density

of the lunar highland crust. The obtained value of 2550 kg m�3

was substantially lower than the expected grain density of

about 2900 kg m�3, and this implies the existence of about

12% porosity in the upper crust. Although the depth depen-

dence of porosity is not well constrained, it must extend at least

several kilometers below the surface and perhaps into the

upper mantle. These high porosities are almost certainly a

result of fractures generated by billions of years of impact

cratering and are consistent with impact-induced porosities

associated with small impact craters on Earth (see also Huang

and Wieczorek, 2012).

A global crustal thickness model of the Moon can be con-

structed by assuming values for the density of the crust, the

density of the mantle, and the mean crustal thickness (see

Section 10.05.5). The density of the lunar crust can be esti-

mated from either remote sensing data or analyses of the short-

wavelength gravity field, whereas the other two free parameters

can be determined iteratively by the use of two additional

constraints. In practice, the mantle density and mean crustal

thickness are varied in order to match the seismically deter-

mined crustal thickness and to ensure that the minimum

crustal thickness is equal to a chosen value. The most recent

interpretations of the Apollo seismic data imply a crustal thick-

ness of either 30�2.5 km (Lognonné et al., 2003) or 38�8

(Khan and Mosegaard, 2002) in the vicinity of the Apollo

12 and 14 landing sites (see also Chenet et al., 2006). When

using the constraint that the minimum crustal thickness

should be close to zero, as implied by the possible excavation

of mantle materials from some impact basins (Yamamoto

et al., 2010), the seismic analyses imply an average crustal

thickness of either 34 or 43 km (Wieczorek et al., 2013).

These average thicknesses imply that the bulk abundance of

alumina in theMoon is similar to that of the bulk silicate Earth.

The most notable feature of the global crustal thickness

models is the dramatic thinning of the crust beneath the large

impact basins. This is a natural consequence of the large quan-

tity of material that is excavated ballistically during the impact

process (e.g., Wieczorek and Phillips, 1999), and it is seen that

the depth of excavation reaches several tens of kilometers

beneath the largest basins. The crustal thickness is close to

zero beneath both the Crisium basin on the nearside hemi-

sphere and the Moscoviense basin on the farside hemisphere

(see also Ishihara et al., 2009). When combined with the

detections of dunite exposures surrounding these two basins,

it is likely that these impacts excavated through the entire crust

and into the underlying mantle. Despite the great size of the

giant South Pole–Aitken basin on the farside, the crust is pre-

dicted to be about 20 km thick in its interior. Either the depth

of excavation during this basin-forming event was atypically

shallow or an impact-generated melt pool differentiated to

form a low density crust (Vaughan et al., 2013). The �1.9 km

offset of the Moon’s center of mass from its center of figure,
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combined with the lateral variations in crustal density as

implied by remote sensing data, implies that the farside crust

is thicker than the nearside hemisphere by about 8 km.

The majority of the lunar impact basins are characterized by

having low elevations, a large central positive free-air gravit-

ational anomaly, a gravity low surrounding the central high,

and a gravity high that outlines the basin’s topographic rim.

Historically, basins with central gravity highs have been

referred to as mascon basins. The central positive gravitational

anomalies are a combination of both uplift of the underlying

crust–mantle interface and flexural support of surface mare

basalt flows. Based on estimates of the mare basalt thicknesses,

which can reach a few kilometers within the central portions of

some impact basins, the crust–mantle interface has been

shown to be uplifted above its pre-mare isostatic position

(e.g., Hikida and Wieczorek, 2007; Neumann et al., 1996;

Wieczorek and Phillips, 1999). This hypothesis is supported

by the existence of mascon basins that lack evidence of mare

volcanism (Konopliv et al., 1998; Zuber et al., 2013b). The

surrounding annulus of negative gravity implies that this

region of the lithosphere is subisostatic (Andrews-Hanna,

2013), and hydrocode simulations of the basin formation

process show that this region of the lithosphere was pushed

below its isostatic level during basin formation (Melosh et al.,

2013). Subsequent uplift of this subisostatic lithosphere by

viscous flow is responsible for uplifting the central portion of

the basin above its isostatic level (Andrews-Hanna, 2013;

Melosh et al., 2013).

In contrast to the largest impact basins, intermediate-sized

craters have negative gravitational anomalies and generally

show some form of compensation. Only about 15% of the

craters in the Reindler and Arkani-Hamed (2001) study appear

to be completely uncompensated or to possess excess negative

gravitational anomalies due to crustal brecciation. For these

intermediate-sized craters, there does not appear to be any

correlation of compensation state with crater age or location.

A few studies have attempted to place constrains on the

elastic thickness of the Moon using both gravity and topogra-

phy data (e.g., Arkani-Hamed, 1998; Crosby and McKenzie,

2005; Sugano and Heki, 2004). Most analyses have concen-

trated on the mascon basins, but it is often difficult to quantify

the validity of the assumptions employed in the loading

models. Recent models of mascon formation invoke a two-

stage process (basin formation, followed by isostatic adjust-

ment), and it is not trivial to incorporate these aspects into

standard analytic flexure models. Furthermore, the thickness of

the mare fill is oftentimes not known, and this is critical for

fitting the present-day central gravitational anomaly. An alter-

native method for estimating the elastic thickness is by com-

paring the location of tectonic features (such as faults and

graben) to that predicted by a specified loading model (e.g.,

Solomon and Head, 1980). Detailed modeling of the Sereni-

tatis basin (Freed et al., 2001) suggests that its elastic thickness

was about 25 km when the concentric rilles formed and prob-

ably greater than 70 km when the younger compressional

ridges formed.

Modeling of the lunar gravity field shows that there are

several features related to subsurface density anomalies. As

one example, two positive Bouguer gravitational anomalies

are found in the vicinity of the Marius Hills volcanic complex
(Kiefer, 2013). These positive anomalies most likely represent

basaltic intrusions that are more dense than the surrounding

crust. If these are modeled as sills, they need to be several

kilometers thick and could potentially represent the magma

chamber that is responsible for the numerous volcanic domes

found in this region. Another example of subsurface density

anomalies is linear gravitational anomalies, many of which are

several hundred kilometers in length (Andrews-Hanna et al.,

2013). These linear anomalies are most visible when plotting

horizontal gradients of the gravity tensor (cf. Petrovskaya and

Vershkov, 2006) and are plausibly the expression of ancient

magmatic dikes that formed when the lunar lithosphere was in

a state of extension.

Finally, one curious large-scale feature of Moon is the

amplitude of its degree-2 gravity and topography terms. If the

Moon were in hydrostatic equilibrium, the amplitude of

the C20 and C22 terms would be directly relatable to the

Earth–Moon separation (cf. eqn [21]). The present-day magni-

tudes of these coefficients, however, are much greater than

would be expected for equilibrium at the present time. This

has led to the suggestion that the equilibrium shape of the

Moon was frozen into the lithosphere when it was closer to

Earth early in its orbital evolution (e.g., Jeffreys, 1976;

Lambeck and Pullan, 1980). Alternatively, it is possible that

this shape is simply a result of large-scale crustal thickness

variations or lateral variations in mantle density.

If the observed shape is interpreted as a relict equilibrium

shape, then this can be achieved for an Earth–Moon separation

of 22 Earth radii with an orbital eccentricity of 0.49 (the

current separation and eccentricity are about 60 Earth radii

and 0.0549, respectively). If the Moon was in a 3/2 spin–

orbit resonance (like Mercury), then alternative solutions

exist for an Earth–Moon separation of about 25 Earth radii

with eccentricities as low as 0.17. These interpretations are

somewhat problematic as the lunar orbit is predicted to have

receded beyond this distance in less than �100 My after the

formation of the Earth–Moon system (e.g., Webb, 1982). Fur-

thermore, C̀uk (2011) pointed out that capture into either the

synchronous or 3/2 resonance is difficult for the proposed high

eccentricities.
10.05.9 Future Developments and Concluding
Remarks

The gravitational fields and topography of the terrestrial

planets have become increasingly better characterized since

the discovery of lunar ‘mascons’ by Muller and Sjogren in

1968. Whereas the early datasets were quite sparse, the gradual

accumulation of data with each successive space mission has

given rise to near-global gravity and topography spherical har-

monic models. Some of the gravity models now possess spher-

ical harmonic bandwidths greater than 900, and future

missions will certainly lead to continued improvements.

Not only has the resolution of the planetary datasets con-

tinued to improve with time, but also so have the analysis

techniques. Early investigations were often restricted to ana-

lyses of individual 1-D line-of-sight gravitational acceleration

profiles. As data coverage became more dense, 2-D regional

models were developed that were more often than not
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analyzed using Cartesian techniques developed for Earth.

Because of the small size of some planetary bodies, the

assumption of Cartesian geometry is not always justified, and

spherical analysis methods have proven to be superior. The full

suite of Cartesian gravity–topography analysis techniques has

been developed for the sphere, including multitaper spectral

analysis, wavelet analysis, the rapid calculation of gravitational

anomalies from finite-amplitude topographic relief, and real-

istic admittance models that take into account surface and

subsurface loading. Though the approximation of Cartesian

geometry may not incur large errors for some small-scale inves-

tigations, it is just as easy to use a spherical-based method that

possesses a comparable computational speed.

Much has been learned about the crustal and lithospheric

structures of the terrestrial planets, but there is still much to be

done. In particular, in hindsight, it is now clear that many

gravity–topography admittance and coherence studies have

used analysis techniques whose robustness are sometimes dif-

ficult to assess. Shortcomings include incorrect application of

the multitaper spectral analysis technique, the neglect of either

the admittance or correlation function, and the use of a theo-

retical admittance model that might be an oversimplification

of reality. Few studies, even for Earth, have performed these

analyses entirely correctly, and one should assess critically each

of the elastic thickness estimates that have been published for

regions where subsurface loading is important.

It is also important to note that the concept of an elastic

lithosphere, which is often used in gravitational analyses, is in

actuality a gross oversimplification of reality. Because of the

ease of generating a time-invariant flexural profile from a load

emplaced on an elastic plate, one would like to hope that the

obtained ‘effective elastic thickness’ has some physical mean-

ing. Though this might be the case for regions where the

magnitude of surface and subsurface loading is small and

where in-plane forces are absent, it has been demonstrated

that the use of a more realistic rheology can yield flexural

profiles that sometimes are quite different. Unfortunately, the

most realistic EVP models are computationally expensive and

are not currently amenable to a robust inversion procedure

using gravity and topography as constraints. A simpler elastic–

plastic formulation could be used in such an inversion, but this

rheological model utilizes assumptions that still might turn

out to be too simplistic. Regardless, it would be appropriate

to develop an elastic–plastic loading model similar to the

elastic model described in Section 10.05.7 for the sphere.

One benefit of such a model is that it would be possible to

invert for the regional heat flow. An additional avenue of

future research is to compare the locations of surface faulting

with those predicted from elastic, elastic–plastic, and EVP

models.

Finally, it is worth mentioning that significant improve-

ments to our knowledge of the gravitational fields and topog-

raphy of the terrestrial planets can be expected in the future. In

particular, even though the land-based topography for Earth is

now known to high accuracy, there are still gaps near the polar

regions that could be filled by data obtained by the orbiting

Geoscience Laser Altimeter System (GLAS) laser altimeter (e.g.,

Abshire et al., 2005; Schutz et al., 2005; Shuman et al., 2006).

Data obtained from the terrestrial mission GOCE, which con-

tains a gravity gradiometer, are leading to improved models of
the terrestrial gravity field. An area of active research for Earth,

but also for the other planets in a more limited sense, is that of

measuring and modeling time-variable gravity signatures that

are a result of hydrologic processes and tidal deformation.

With respect to the other planets, the topography and grav-

ity field of Mercury are continuing to be characterized by data

collected by the MESSENGER spacecraft (Solomon et al.,

2001), and these will be supplemented by data that will be

collected by the future BepiColombo mission (Spohn et al.,

2001). The JUpiter ICy moons Explorer (JUICE) will collect

altimetric and gravity data for the icy satellite Ganymede and to

a limited extent Europa and Ganymede. Limited gravitational

data will also be collected during the end of the Venus Express

mission and during the MAVEN mission to Mars.
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