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the shapes of planets and moons

the equal gravitation of the parts on all sides would give a spherical ig-
ure to the planets, if it was not for their diurnal revolution in a circle …. 

I. newton, Principia, theorem XVI

Modern space exploration has made everyone familiar with the idea that planets are mostly 

spherical. from a great distance a casual observer might not even notice that rotating plan-

ets and moons are not quite perfect spheres. However, careful examination reveals depar-

tures from perfection. rotating planets are slightly oblate spheres, while tidally locked 

satellites are triaxial. furthermore, once these bodies are approached closely, it becomes 

clear that nearly every planet and moon possesses topographic variations. Mountains, val-

leys, plains, and craters create landscapes that, up close, can challenge attempts to traverse 

them by mechanical rovers or human explorers.

the forces that create and maintain the topography of planetary bodies depend on the 

scale of the feature. the gravitational self-attraction that tends to make planets spherical 

operates differently on the scale of individual mountains. It is thus useful to distinguish 

several orders of relief that categorize different scales of topographic feature. this notion 

can be made mathematically precise through the use of spherical harmonics, a concept that 

will be discussed later in this chapter.

the tendency of large masses of material to take on a spherical shape was irst recog-

nized by Isaac newton (1643–1727) in 1686. His brilliant insight into universal gravitation 

showed that, in the absence of other forces, the attraction of matter for other matter tends 

to mould all bodies into spheres. Gravity is weak compared to other forces so, on a human 

scale, bodies must be very large for gravity to dominate the electromagnetic forces that 

give atomic matter its strength to resist deformation. the conlict between strength and 

gravitation is the subject of chapter 3. this chapter concentrates on the largest-scale fea-

tures of planetary topography and its geometric properties.
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2.1 The overall shapes of planets

2.1.1 Non-rotating planets: spheres

the lowest order of relief, which in this book we call the “zeroth order” because it cor-

responds to the zeroth-order spherical harmonic, is the overall diameter of the body. the 

shape of a non-rotating, self-gravitating mass of material that has no intrinsic strength is 

a perfect sphere. We can describe such an object by its radius or diameter, and with this 

single datum our description of its shape is complete. of course, the smaller bodies in 

the Solar System, such as asteroids or small satellites, may depart considerably from a 

perfect spherical shape, but it is still useful to describe them by the radius of a sphere of 

equal volume. Most tabulations of the physical properties of the planets and moons give 

their diameter, along with their mass (see table 2.1). from the mass and diameter other 

physically interesting parameters, such as density or the surface acceleration of gravity, 

can be computed.

table 2.1 Physical characteristics of large bodies in the Solar System

name

equatorial 

radius (km) Mass (kg)

Mean 

density  

(kg/m3)

equatorial 

acceleration of 

gravity (m/s2)

Sidereal  

rotation  

period

Mercury 2 439 3.303 x 1023 5430 2.78 58.75 days

Venus 6 051 4.870 x 1024 5250 8.60 243.01 days

earth

 Moon

6 378

1 738

5.976 x 1024

7.349 x 1022

5520

3340

9.78

1.62

1.00 days

27.322 days

Mars 3 393 6.421 x 1023 3950 3.72 1.029 days

 ceres 424 8.6 x 1020 1980 0.32 9.08 hours

 Vesta 234 3.0 x 1020 3900 0.37 5.34 hours

Jupiter

 Io

 europa

 Ganymede

 callisto

71 492a

1 815

1 569

2 631

2 400

1.900 x 1027

8.94 x 1022

4.80 x 1022

1.48 x 1023

1.08 x 1023

1330

3570

2970

1940

1860

22.88

1.81

1.30

1.43

1.25

9.925 hoursb

1.769 days

3.551 days

7.155 days

16.689 days

Saturn

 titan

60 268a

2 575

5.688 x 1026

1.35 x 1023

690

1880

9.05

1.36

10.675 hoursb

15.945 days

uranus 25 559a 8.684 x 1025 1290 7.77 17.240 hoursb

neptune

 triton

24 764a

1 350

1.02 x 1026

2.14 x 1022

1640

2070

11.0

0.78

16.11 hoursb

5.877 days

Pluto

 charon

1 150

604

1.29 x 1022

1.52 x 1021

2030

1650

0.658

0.278

6.3872 days

6.3872 days

a Measured at the 1-bar pressure level.
b Internal rotation period derived from the magnetic ield.
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2.1 The overall shapes of planets 27

the volume V of a sphere of radius r is, as everyone learns in high school, 
V r= 4

3
3π . 

fewer readers may remember that the volume of a triaxial ellipsoid with semiaxes a, b and 
c is given by the similar formula V abc= 4

3
π . thus, the mean radius (that is, the radius of 

a sphere of equal volume) of a triaxial body is given by r abcmean =
3 . In many cases a, b, 

and c differ only slightly from the mean. When this happens we can use the approximate 
formula rmean ≈ (a + b + c)/3. these simple formulas will prove useful in interpreting the 
relationships between various radii commonly encountered in tabulations.

2.1.2 Rotating planets: oblate spheroids

newton himself recognized the irst level of deviation from a perfectly spherical shape. 

rotating bodies are not spherical: they are oblate spheres with larger equatorial radii 

than polar radii. In the language of spherical harmonics this is the second order of relief. 

Historically, the earth’s oblateness was not at all obvious to newton’s contemporaries and 

sparked a debate between newton and contemporary astronomer Jacques cassini (1677–

1756) that resulted in one of the irst major scientiic expeditions, a project to precisely 

measure and compare the length of a degree of latitude in both france and lapland. the 

result, announced in 1738, was the irst direct evidence that the earth is shaped like an 

oblate spheroid, whose equatorial radius is about 22 km longer than its radius along its axis 

of rotation. this apparently tiny deviation, of only 22 km out of 6371 km, is expressed by 

the lattening of the earth, f, deined as:

 
f

a c

a
= −

 
(2.1)

where a is the equatorial radius of the earth and c is its polar radius (figure 2.1). the cur-

rently accepted value for the earth’s lattening, 1/298.257, is substantially different from 

newton’s own theoretical estimate of 1/230.

newton derived his estimate of earth’s oblateness from a theory that assumed that the 

earth’s density is uniform. under this assumption he was able to show that the lattening 

is proportional to a factor m, the ratio between the centrifugal acceleration at the equator 

(a consequence of rotation) and the gravitational acceleration at the equator. this ratio 

expresses the tendency of a planet to remain spherical: Smaller m implies that rotation is 

less important and the planet is more spherical.

 
m

a

GM G
= ≅ω

π
ω

ρ

2 3 23

4
.
 

(2.2)

In this equation ω is the rotation rate of the earth (in radians per second), G is newton’s 

gravitational constant, 6.672 x 10–11 m3/kg-s2, M is the mass of the earth and ρ  is its mean 

density. even in newton’s time it was known that m ≈ 1/290. newton used a clever argu-

ment involving hypothetical water-illed wells drilled from both the pole and equator that 

join at the center of the earth. Supposing that the wellheads are connected by a level canal 
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at the surface, he used the impossibility of perpetual motion to argue that the pressure at the 

bottom of the water columns had to be equal at the earth’s center, from which he derived 

the expression:

 
f m= 5

4
.
 

(2.3)

although not quite correct for the earth, this formula gives an excellent irst approxima-

tion to the lattening.

Implicit in newton’s derivation is the idea that water tends to assume a level surface. 

that is, the surface that water naturally attains coincides with a surface on which the gravi-

tational potential energy is constant. If the surface of a body of water, or any other strength-

less luid, did not follow a constant gravitational potential, it could gain energy by lowing 

downhill. thus, in the absence of currents or other imposed pressure gradients, the surface 

of a luid must coincide with an equipotential. this is sometimes called an equilibrium 

surface. this proposition holds equally well for planetary atmospheres, which also tend 

to have equal pressures on equipotential surfaces. It is important to note that on a rotat-

ing planet the equilibrium surface is not a sphere but an oblate spheroid (on very rapidly 

a

c

figure 2.1 oblate spherical shape of a rotating luid planet with no strength. the equatorial radius is 
a, the polar radius is c, and the rotation rate is ω.
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2.1 The overall shapes of planets 29

rotating bodies this surface becomes still more complex, but such surfaces do not seem to 

be important on any currently known planets). In real planets, lateral variations in density 

lead to further distortions of the equilibrium surfaces. an arbitrarily chosen equilibrium 

surface, called the geoid, forms the primary reference from which topographic elevations 

are measured on earth. Deviations of a planet’s surface from an equilibrium surface must 

be supported by strength.

Several hundred years of further effort by mathematical physicists were needed to extend 

newton’s simple lattening estimate to a more comprehensive form. In 1959 Sir Harold 

Jeffreys established a formula for the lattening of a rotating, strengthless body in hydro-

static equilibrium (for which contours of constant density coincide with equipotentials at 

all depths within the body). this more complicated formula is:

 

f

m

C

Ma

=

+ − 















5

2

1
25

4
1

3

2 2

2

 

(2.4)

where C is the planet’s moment of inertia about the polar axis. the moment of inertia is 

deined as the integral:

 
C r dm

o

M

= ∫ 2

 
(2.5)

where r is the radial distance of the ininitesimal mass element dm from the axis about 

which C is computed. In the case of the polar moment of inertia C this is the rotation axis.

the dimensionless moment of inertia ratio, C/Ma2, expresses the concentration of 

mass toward the center of the planet. this ratio is equal to zero for a point mass, equals 

2/5 (= 0.4) for a uniform density sphere and is measured to be 0.33078 for the earth. 

earth’s moment of inertia ratio is less than 0.4 because mass is concentrated in its dense 

nickel–iron core. In the uniform density case, C/Ma2= 2/5, and equation (2.4) reduces 

exactly to newton’s estimate.

newton’s contemporaries also noted the rather large lattening of the rapidly rotating 

planets Jupiter and Saturn. Modern measurements of the lattening of the planets in our 

Solar System are listed in table 2.2.

Mars is a special case. Its observed shape lattening, fMars = 1/154 is considerably larger 

than that estimated from Jeffreys’ formula above, which gives f = 1/198. this is because 

Mars is far from hydrostatic equilibrium, and so violates the assumptions of Jeffreys’ der-

ivation. the tharsis rise volcanic complex is so large and so massive that it dominates the 

gravitational ield of the planet and warps its shape well out of hydrostatic equilibrium. Its 

equatorial radius varies by almost 5 km, depending on longitude. Geophysical models of 

Mars have yet to fully separate the effects of tharsis from the radial concentration of mass 

towards its core. the shapes of small bodies in the Solar System – comets, asteroids and 
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small moons – do not obey Jeffreys’ formula for similar reasons; their inherent strength 

produces large departures from hydrostatic equilibrium.

Mercury is another interesting planet from the lattening perspective. although we do 

not know its lattening very accurately (not to better than 10%), it seems to be very small, 

about 1/1800. this is consistent with its current slow rotation period of about 57 days. 

However, Mercury is so close to the Sun that it is strongly affected by solar tides. It may 

originally have had a much faster rotation rate that has since declined, placing the planet 

in its current 3/2 spin-orbital resonance with the Sun (that is, Mercury rotates three times 

around its axis for every two 88-day trips around the Sun). If this is correct, then Mercury’s 

lattening may have changed substantially over the history of the Solar System. chapter 4 

will discuss the tectonic consequences of this global shape change.

2.1.3 Tidally deformed bodies: triaxial ellipsoids

after rotation, the next degree of complication in planetary shapes includes the effects of 

tidal forces. tides are the result of the variation of the gravitational potential of a primary 

attractor across the body of an orbiting satellite, along with the centripetal potential due 

to its orbit about the primary. the consequence of these varying potentials on a mostly 

spherical satellite is that it becomes elongated along the line connecting the centers of the 

primary and satellite, compressed along its polar axis, and compressed by an intermediate 

amount along the axis tangent to its orbit (figure 2.2).

If the satellite (and this includes the planets themselves, which are satellites of the Sun) 

spins at a rate different than its orbital period, then the elongation of the equipotential 

surface in a frame of reference rotating with the satellite varies with time. a point on the 

table 2.2 Deviations of Solar System bodies from spheres

name

Moment of 

inertia factor, 

C/MR2

topographic 

lattening

Dynamical 

lattening

center of mass – 

center of igure 

offset (km)

Mercury 0.33 ~1/1800. 1/1.03 x 106 ?

Venus 0.33 0 1/1.66 x 107 0.280

earth

 Moon

0.33078

0.394

1/298.257

1/801.6

1/301

1/1.08 x 105

2.100

1.982

Mars 0.366 1/154. 1/198. 2.501

Jupiter 0.254 1/15.42a 1/15.2 –

Saturn 0.210 1/10.2a 1/10.2 –

uranus 0.225 1/43.6a 1/50.7 –

neptune 0.24 1/58.5a 1/54.4 –

Data from yoder (1995).
a at 1-bar pressure level in the atmosphere.
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2.1 The overall shapes of planets 31

equator is alternately lifted and dropped as it rotates from the line between its center and 

that of the primary, to the line tangent to the orbit. these periodic equipotential changes, 

which on earth we recognize as the force responsible for oceanic tides, create motions that 

dissipate rotational energy and, for strong enough tides or long enough times, may even-

tually slow the satellite’s rotation. the earth is subject to both solar and lunar tides, which 

have gradually lengthened our day from 18 hours, 1.3 billion years ago, to its present 24 

hours. the Moon, being less massive than the earth, long ago lost any excess rotation and 

is now synchronously locked to the earth, rotating once on its axis for each orbit around the 

earth. Many other satellites in the Solar System are similarly synchronously locked to their 

primaries, including the four large Galilean satellites of Jupiter and Saturn’s large satellite 

titan. Mercury itself is an exception. although astronomers long believed that Mercury is 

synchronously locked to the Sun, we now understand that its highly elliptical orbit led it to 

be trapped in the present 3/2 spin-orbit resonance.

tidal forces produce a characteristic pattern of deformation on synchronously rotating 

satellites. Harold Jeffreys, in his famous book The Earth (Jeffreys, 1952), showed that the 

equipotential surface of a tidally locked body is a triaxial ellipsoid with three unequal axes 

a>b>c. the lengths of these axes are:

 

a r

b r

c r

= +





= −





= −




moon 1
35

12

1
10

12

1
25

12

Ω

Ω

Ω

moon

moon   

(2.6)

a

c

b
R

Mearth

Mmoon

figure 2.2 tidal deformation of a synchronously rotating satellite such as our Moon, orbiting about 
its primary at a distance R. the tidal forces stretch the satellite along the line connecting its center to 
that of its primary such that the radius a along this line is larger than any of its other principal radii. 
the smallest radius c is perpendicular to the orbital plane and the intermediate radius b is parallel to 
the orbit’s tangent.
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where rmoon is the mean radius of the Moon. It is clear that the average of these three axial 

distances just equals the mean radius. these distortions depend on the dimensionless factor 

Ω, given by:

 

Ω =
M

M

r

R

earth

moon

moon
3

3

 

(2.7)

where Mearth and Mmoon are the masses of the earth and Moon, respectively, and R is the dis-

tance between the earth and the Moon.

naturally, for satellites other than the Moon orbiting about some other primary, the analo-

gous quantities must be inserted in Ω. the distortion is larger for a larger ratio between 

primary mass and satellite mass and smaller for increased distance between the two bodies. 

Jeffreys’ equations above are strictly valid only for a Moon of uniform density. the book 

by Murray and Dermott (1999) describes how to treat the general case where the Moon’s 

density is not uniform. table 2.3 lists the ratios between the different axes of the satellites 

in the Solar System for which they are known.

according to the formulas (2.6) and (2.7), the maximum difference between the axes, a – 

c, on earth’s Moon is presently about 66 m. the Moon is 10 to 20 times more distorted than 

this, a fact that was known even in Harold Jeffreys’ day. the current best estimates indicate 

that the Moon is at least 10 times more distorted than the hydrostatic prediction. this obser-

vation prompted Jeffreys to propose that the present igure of the Moon is the fossil remnant 

of a formerly much larger distortion. the Moon is presently receding from the earth at the 

rate of about 3.8 cm/year. this recession rate was surely higher in the past when the Moon 

was closer to the earth and tides were, therefore, higher (the full story of the evolution of the 

Moon’s orbit is a complicated one, involving changes in tidal dissipation over the age of the 

earth as continents and seas shifted). nevertheless, it is clear that the Moon was once much 

closer to the earth than it is now. Because the lengths of the axes depend on the earth–Moon 

distance to the inverse cube power, Jeffreys postulated that the present igure could have 

been frozen-in at a time when the Moon was about 1/2.7 times its present distance from the 

earth. at this distance the Moon would have circled the earth in only 6.1 days and, by angu-

lar momentum conservation, a day on earth would have lasted only 8.2 hours.

the major problem with Jeffreys’ proposal (which he recognized himself) is that the 

hydrostatic formulas (2.6) make a deinite prediction that that the ratio ( a -c )/( b – c ) = 4,  

independent of the earth–Moon distance. the latest value of this ratio from Japan’s Kaguya 

mission (araki et al., 2009) is 1.21, far from the hydrostatic value of 4. the general opin-

ion at the present time is that, although the Moon clearly departs from a hydrostatic shape, 

the present shape is more a consequence of geologic forces that sculpted the lunar surface 

rather than the remnant of a former hydrostatic igure.

In examining table 2.3 the ratio of axes differences in the last column is more often quite 

different from the theoretical value of 4 than close to it. the larger satellites approach most 

closely to this ideal ratio, while the smaller ones are clearly dominated by strength rather 

than gravitational forces.
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Most of the other moons in the Solar System depart substantially from a hydrostatic 

shape. However, it appears that the shape of Jupiter’s large, tidally heated moons Io and 

europa may be close to equilibrium ellipsoids. If that is the case, then the maximum dis-

tortion, a–c, should be 14.3 km for Io and 3.9 km for europa. the Galileo spacecraft 

table 2.3 Triaxial shapes of small satellites

name

Density  

(kg/m3)

Mean radius  

(km)

(a–c) 

(km)

(a–c)/

(b–c)

earth’s Satellite

Moona 3340 1737 0.713 1.21

Martian Satellites

Phobosb 1900 11.1 4.0 2.2

Deimosb 1760 6.3 2.1 2.6

Jovian Satellites

Metisc 3000 21.7 13.0 4.3

adrasteac 3000 8.2 3.0 3.0

almatheac 862 83.6 61.0 6.8

thebec 3000 49.2 16.0 2.3

Iod 3528 1818.1 14.3 4.1

europad 3014 1560.7 3.0 3.8

Ganymeded 1942 2634.1 1.8 4.5

callistod 1834 2408.3 0.2 2.0

Saturnian Satellites

Mimase 1150 198.1 16.8 2.7

enceladuse 1608 252.1 8.3 2.7

tethyse 973 533.0 12.9 3.6

Dionee 1476 561.7 3.5 5.0

rheae 1233 764.3 4.1 −6.8

titanf 1881 2574.5 0.410 3.8

Iapetuse 1083 723.9 35.0 n/a

uranian Satellites

Mirandag 1200 235.7 7.1 5.5

arielg 1670 578.9 3.4 17.0

Data from:
a araki et al. (2009)
b thomas (1989)
c thomas et al. (1998)
d Davies et al. (1998)
e thomas et al. (2007)
f Iess et al. (2010)
g thomas (1988)
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conirmed these expectations with an accuracy of 0.12 and 0.65 km, respectively (Davies 

et al., 1998).

2.1.4 A scaling law for planetary igures?

William Kaula (1926–2000), who contributed extensively to understanding the igure of 

the earth from satellite measurements, proposed a scaling law that seems to approximately 

give the deviations of planetary igures from a hydrostatic shape. the law is based on the 

idea that all planets have about the same intrinsic strength, and that stress differences are 

proportional to the surface acceleration of gravity, g (Kaula, 1968, p. 418). In the absence 

of any other information about a planet, this law may give a useful irst estimate of how far 

a “normal” planet’s igure departs from the hydrostatic shape.

this departure is given by Kaula’s irst law:

 

C A

Ma g

− ∝
2 2

1

non-hydrostatic  

(2.8)

where C and A are the moments of inertia about the shortest and longest axes of the 

igure, respectively. the difference in moments of inertia is proportional to the normal-

ized difference of the lengths of the axes, (a-c)/a, so that this rule also implies that the 

deviations of this ratio from its hydrostatic value should depend on the inverse square 

of the gravitational acceleration. for constant density, g is proportional to the planetary 

radius, so this ratio should equally depend on the inverse square of the planetary radius. 

looking ahead to chapter 3, we will see in Section 3.3.3 and figure 3.5 that this relation 

does seem to hold approximately in our Solar System for the larger bodies, but it fails 

badly for small objects for which strength is controlled by frictional forces that depend 

on pressure.

the possibility that planets may have substantial non-hydrostatic contributions to their 

igures plays an important role in studies of rotational dynamics and the tidal evolution of 

bodies in the Solar System. for example, the present orientation of the Moon with respect 

to the earth may be partly due to the distribution of dense lavas in the low-lying basins on 

the nearside. the orientation of Mercury may be controlled by mass anomalies associated 

with the caloris Basin. and if europa has too large a non-hydrostatic igure, then its puta-

tive slow non-synchronous rotation cannot occur.

2.1.5 Center of mass to center of igure offsets

one of the widely publicized results of the apollo missions to the Moon was the discovery 

that the Moon’s center of mass is about 2 km closer to the earth than its center of igure. for 

many years this offset was known only in the Moon’s equatorial plane, as all of the apollo 

lights circled the Moon’s equator. now, as a result of the unmanned clementine mission, 

we know more precisely that the offset is 1.982 km.
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although, in hindsight, it is not really surprising that such an offset should exist, 

the possibility that the center of igure of a planet might not correspond with its cen-

ter of mass was never considered in classical geodesy. all harmonic expansions of the 

gravity ield of the earth are made about its center of mass and so the reference geoid 

and all other equipotential surfaces are also centered about this point. In fact, the earth 

itself has a substantial center of mass – center of igure offset if the water illing the 

ocean basins is neglected. the loor of the Paciic ocean is about 5 km below sea level, 

whereas the opposite hemisphere is dominated by the continental landmasses of asia, 

africa, and the americas. the waterless earth’s center of igure is thus offset from its 

center of mass by about 2.5 km at the present time. of course, as the continents drift 

around over geologic time this offset gradually changes in both direction and magni-

tude. the fundamental reason for the offset is the difference in density and thickness 

between oceanic crust and continental crust. table 2.2 lists these offsets for the bodies 

where they are known.

for reasons that are still not understood, most of the terrestrial planets show striking 

asymmetries on a hemispheric scale. the nearside of the Moon looks quite different from 

the farside, and lies at a lower average elevation with respect to its center of mass. It is 

generally believed that this is due to a thicker crust on the farside, although what caused 

the thickness variation is unknown. Mars also possesses a strong hemispheric asymmetry. 

the northern plains of Mars lie an average of 5 km lower than the southern highlands. Here 

again the immediate cause may be a difference in crustal thickness or composition, but the 

ultimate reason for the difference is presently unknown.

2.1.6 Tumbling moons and planets

Most rotating bodies in the Solar System spin about an axis that coincides with their max-

imum moment of inertia, the C axis in our terminology. the moment of inertia is actually a 

second-rank tensor, written Iij, which can be deined for any solid body as a generalization 

of the deinition (2.5) for C:

 Iij = ∫ rirj dm (2.9)

where the subscripts i and j run from 1 to 3 and denote, respectively, the x, y, and z axes of 

a cartesian coordinate system. the symbol ri for i = 1, 2, and 3, thus, denotes the x, y, and 

z coordinates of a mass element dm with respect to the origin around which the moment of 

inertia is computed, generally taken to be the center of mass of a body.

a fundamental theorem of tensor mathematics states that a suitable rotation of the coord-

inate axes can always be found in which the tensor (2.9) is diagonal (that is Iij= 0 unless 

i = j) about three perpendicular axes. the moments of inertia about these special axes are 

called the principal moments of inertia and are labeled C, B, and A for the maximum, inter-

mediate, and minimum principal moments, C ≥ B ≥ A. the lengths of the corresponding 

principal axes are conventionally written in lower case and, perhaps confusingly, the c axis 

is usually the shortest of the three: c ≤ b ≤ a. the reason for this inverse order is that the 
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moment of inertia is largest about that axis for which the mass elements are most distant 

and, thus, the ri perpendicular to the axis are largest.

the reason that the C axis is special is that a body that rotates about this axis has the 

lowest kinetic energy possible for a ixed angular momentum. angular momentum is con-

served for an isolated body, but kinetic energy can be converted into heat. a body rotating 

about the A axis, say, spins relatively quickly but this is the highest-energy rotational state, 

so if it exchanges kinetic energy for heat it must spin about another axis, or a combin-

ation of axes in a complex tumbling motion. When the body inally spins about its C axis 

it attains a minimum energy coniguration and cannot change its rotation further (unless 

some external torque acts on it).

this lesson was learned the hard way in the early days of space exploration when the 

irst uS satellite, explorer 1, which was shaped like a long narrow cylinder, was stabilized 

by spinning it around its long axis. a broken antenna connection lexed back and forth as 

the satellite rotated, dissipating energy. Within hours the satellite was spinning about its C 

axis – the short axis, perpendicular to the cylinder. Because the spacecraft was not designed 

to operate in this coniguration radio contact was soon lost.

Most Solar System bodies, therefore, spin about their C axes. a few small asteroids 

have been discovered that are in “excited” rotation states in which the object is not in its 

minimum-energy rotational state and thus tumbles, but these exceptions are rare because 

nearly every object has some means of dissipating energy internally and thus eventually 

seeks out the lowest energy coniguration.

Mars is a prime example of the importance of this process. Mars’ major positive gravity 

anomaly, the tharsis rise, is located on its equator. this location puts the excess mass as 

far as possible from its rotational axis, maximizing the moment of inertia. the opposite 

extreme is illustrated by the asteroid Vesta, which suffered an impact that gouged out a 

crater (a mass deicit) nearly as large in diameter as Vesta itself. the central peak of this 

crater is now located at its rotational pole (which happens to be the south pole), the most 

stable coniguration.

2.2 Higher-order topography: continents and mountains

2.2.1 How high is high?

as silly as this question may seem, it highlights a common assumption that underlies our 

thinking when we consider the elevation of some topographic feature. an elevation is a 

number or contour that we read off a map (or, more commonly in modern times, a color 

code on an image). But what is that elevation relative to? Does it directly give the distance 

from the center of the planet? or the height above an arbitrary spheroid? or, more com-

monly on earth, the elevation above mean sea level? the answer to all these questions is, 

“it depends.”

the fundamental reference surface for elevations, or geodetic datum, is established 

empirically. Historically, it has varied with the technology for measuring topography, 
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completeness or accuracy of information and, sometimes, pure convenience. the era of 

space exploration has brought great changes in this type of measurement, as well as bring-

ing new planets under close scrutiny. each new planet has presented unique challenges in 

the apparently simple task of measuring the elevations of its surface features.

In the case of the earth, detailed mapping began in the eighteenth century with trigono-

metric surveys utilizing telescopes, carefully divided angle scales, rods, chains, levels, and 

plumb bobs. the primary referent for elevations was mean sea level, already a problematic 

concept in view of changes of water level in response to tides, currents, and meteorological 

pressure changes. Individual countries established topographic surveys and used astro-

nomical measurements to locate prime coordinate points. nations with access to an ocean 

established elaborate gauging stations from which a time-average or mean sea level could 

be deined. Survey crews could carry this elevation reference inland by the use of levels 

and plumb bobs. elevations of high and relatively inaccessible mountains were estimated 

barometrically, by comparing the pressure of the air at the top of the mountain to that at 

sea level. all of these methods, on close examination, amount to referring elevations to an 

equipotential surface. the equipotential that corresponds to mean sea level is called the 

geoid, and all elevations are, ideally, referred to this surface.

the geoid is quite hard to measure accurately. although it roughly corresponds to a 

lattened sphere, as described previously, slight variations in density from one location to 

another gently warp it into a complex surface. Determination of the geoid thus requires 

precision measurements of the acceleration of gravity, as well as accurate leveling. Much 

of both classical and satellite geodesy is devoted to determining the geoid and, thus, per-

mitting elevations to be deined with respect to a level surface (level in the sense of an 

equipotential, down which water will not run). Historically, each nation with a topographic 

survey created its own version of the geoid, although thanks to satellite measurements these 

are now knit into a consistent global network.

elevations referred to the geoid are very convenient for a variety of purposes. Besides 

engineering applications, such as determining the true gradient of a canal or railway line, 

they are also essential to geologists who hope to estimate water discharges from the slope 

of a river system. the “upstream” ends of many river systems (the Mississippi is one) are 

actually closer to the center of the earth than their mouths. and yet the water still lows 

from head to mouth because water lows from a higher to a lower gravitational potential.

the modern era of the Global Positioning System (GPS) is ushering in new changes. the 

orbiting GPS satellites really deine positions with respect to the earth’s center of mass, 

so converting GPS elevations to elevations with respect to the geoid requires an elaborate 

model of the geoid itself. It has become common to refer elevations to a global average 

datum that locally may not correspond to the actual geoid.

the determination of elevations on other planets is becoming nearly as complex as that 

on earth, thanks to a lood of new data from orbiting spacecraft. the irst body to be 

orbited by a spacecraft capable of determining elevations precisely was the Moon. the 

apollo orbiters carried laser altimeters that measured the elevations of features beneath 

their orbital tracks. although it was many years before the clementine spacecraft expanded 
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this method beyond the equatorial swaths cut by the apollo orbiters, a prime reference 

surface for lunar elevations had to be chosen. rather than trying to use the very slightly 

distorted equipotential surface, the reference surface was chosen to be a perfect sphere of 

radius 1738 km centered on the Moon’s center of mass. all lunar topographic elevations 

are relative to this sphere. Since this sphere is not a geoid (although it is close enough for 

many purposes) care must be taken when, for example, estimating the slopes of long lava 

lows over the nearly level plains of the maria.

the topographic reference levels chosen for different planets varies depending on the 

rotation rate (and direction) of the planet, its degree of deviation from a sphere, and the 

technology available. the reference surfaces of Mercury and Venus are spheres. the mean 

diameter of Mercury has yet to be established: at the moment, the only global data set 

comes from radar measurements of equatorial tracks, but the MeSSenGer laser altimeter 

should soon make a better system possible. the reference surface for Venusian elevations is 

a sphere of diameter 6051 km, close to the average determined by the Magellan orbiter.

Mars offers mapmakers serious problems when it comes to elevations. the Martian 

geoid is far from a rotationally symmetric spheroid, thanks to the large non-hydrostatic 

deviations caused by the tharsis gravity anomaly. the geoid is intended to coincide with 

the level at which the mean atmospheric pressure equals 6.1 mb, the triple point of water. 

However, the atmospheric pressure varies seasonally by a substantial fraction of the entire 

pressure, so locating this point is not straightforward.

Some Martian elevation maps are referenced to a spheroid with lattening 1/170, a sys-

tem recommended by the International astronomical union (Iau) (Seidelmann et al., 

2002). However, much of the high-precision data currently available is referenced to a 

more complex and realistic geoid, so that the user of such information must be alert to the 

system in use. elevations with respect to a geoid are most useful in determining what direc-

tions are really downhill (that is, toward lower gravitational potential), which determines 

the expected low direction of water or lava. Because geoids improve with time, no map of 

elevations is complete without a speciication of the reference surface in use.

the surfaces of small asteroids such as eros or Ida, comet nuclei such as tempel 1, and 

many other small bodies that will be mapped in the future, present new problems. they are 

too irregular in shape to approximate spheres. at the moment their surface elevations are 

deined in terms of the distance from their centers of mass.

the gas giant planets in the outer Solar System lack solid surfaces and so elevations are 

especially dificult to deine. the convention is now to refer elevations on these bodies to 

a spheroid at the 1-bar pressure level, which is a good approximation to an equipotential 

surface on such planets.

2.2.2 Elevation statistics: hypsometric curves

elevation data can be processed and interpreted in many ways. a map of elevations, a topo-

graphic map, is certainly the most familiar and contains a wealth of data. However, one can 

extract more general features from such data that tell their own stories. on a small scale, 

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9780511977848.003
Downloaded from http:/www.cambridge.org/core. University of Chicago, on 04 Jan 2017 at 02:43:18, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9780511977848.003
http:/www.cambridge.org/core
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roughness is important for safely landing on and roving over planetary surfaces. Some 

of the methods for analyzing roughness are described in Box 2.1. on the large scale, an 

elevation plot known as the hypsometric curve has proven useful in highlighting general 

properties of planetary crusts.

a hypsometric curve is a plot of the percentage of the area of a planet’s surface that 

falls within a range of elevations. curves of this type have been constructed for the earth 

ever since global topographic data sets became available and they show one of the earth’s 

major features. figure 2.3c illustrates the earth’s hypsometric pattern, binned into eleva-

tion intervals of 500 m. the striking feature of this curve is the two major peaks in areas 

that lie between the maximum elevation of 7.83 km and the minimum of –10.376 km 

below mean sea level (note that these are not the highest and lowest points on the earth – 

they are the highest and lowest elevations averaged over 5′ x 5′, 1/12-degree squares). a 

sharp peak that encompasses about 1/3 of the area of the earth lies close to or above sea 

level. the second peak lies about 4 km below mean sea level and accounts for most of the 

rest of the earth’s area. these two peaks relect the two kinds of crust that cover the sur-

face of our planet. the low level is oceanic crust, which is thin (5–10 km), dense (about 

3000 kg/m3), basaltic in composition and young, being created by mid-oceanic spreading 

centers. the second principal topographic level is continental crust, which is much thicker 

(25–75 km) than oceanic crust, less dense (about 2700 kg/m3), granitic in composition and 

much older than the ocean loors. Plate tectonics creates and maintains these two different 

crustal types.

although figure 2.3a shows a hypsometric curve for Mercury, the data set from which 

this is derived is sparse at the moment, consisting of a number of mostly equatorial radar 

tracks. at least with this data, however, there is no indication of an earth-like dichotomy 

of crustal thickness.

figure 2.3b illustrates the hypsometric curve of Venus, for which an excellent data set 

exists from the Magellan radar altimeter. this curve is an asymmetric Gaussian, skewed 

toward higher elevations. there is no indication of a double-peaked structure, from which 

we must infer that, whatever processes are acting to create the crust of Venus, they must 

differ profoundly from those that affect the earth.

the Moon’s hypsometric curve is illustrated in figure 2.3d. like Venus, the Moon lacks 

a dichotomy of crustal types, although there are important differences in elevation  between 

the nearside and farside, illustrated by the thin lines that show separate hypsometric curves 

for the two hemispheres. this is generally attributed to systematic differences in crustal 

thickness between the nearside and farside, rather than compositional differences. the 

role of the large basins, especially the gigantic South Pole-aitken basin, is still not fully 

understood.

finally, we come to Mars in figure 2.3e. Mars, surprisingly, shows a double-peaked 

distribution similar to that of the earth. as shown by the light lines, the lower peak is 

accounted for by the northern lowlands, while the high peak represents the contribution 

of the Southern Highlands. the two terrains are divided by the Martian crustal Dichotomy, 

an elliptical region tilted with respect to the north pole that may represent the scar of an 
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Box 2.1 Topographic roughness

the roughness of a surface is a concept that everyone is familiar with. Surprisingly, although 

there are many ways to measure roughness, there is no standard convention. Intuitively, rough 

surfaces are full of steep slopes, while smooth surfaces lack them. one measure of roughness 

would, thus, cite some statistical measure of the frequency of occurrence of a particular slope, 

extended over a range of slopes. for example, root Mean Square (rMS) measures have often 

been used because they can be easily extracted from radar backscatter data. this statistic 

implicitly assumes that the distribution of slopes approximately follows a Gaussian curve, an 

assumption that needs to be tested. one might also cite mean or median slopes.

these simple statistical measures, while perhaps capturing our intuitive idea of roughness, 

do miss an important aspect of the concept, and that is the scale of the roughness. a surface 

that is smooth on a scale of 100 m might be very rough on the scale of 10 cm, a difference 

that is of overwhelming importance when one is trying to set a 1 m lander down safely onto a 

planetary surface. We thus need to deine a baseline, L, in addition to the slope of a surface and 

to describe the statistics of slopes with respect to a range of baselines.

We could, for example, deine the slope s(L) of a surface for which we measure the 

elevations z(x, y), where x and y are cartesian coordinates that deine a location on the surface. 

the surface slope is then given by:
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(B2.1.1)

the points where the slope is evaluated, (x, y) and (x′,y′), are separated by the distance 

L x x y y= − + −( ) ( )′ ′2 2 . on a two-dimensional surface we need some understanding of 

how to locate the different points at which elevations are evaluated, and many methods have 
been devised for this. at the present time, elevation data is often acquired by laser altimeters 
on orbiting spacecraft. the tracks along which elevations are measured are linear or gently 
curved, simplifying the decision process. new techniques may make this problem more acute, 
however: the laser altimeter aboard the lunar reconnaissance orbiter now collects elevation 
data simultaneously from an array of ive non-collinear spots, so that a full two-dimensional 
array of slopes can be deined.

a promising statistic is derived from fractal theory, the Hurst exponent, and has been 

applied to the analysis of Martian slopes in the Mola dataset (aharonson and Schorghofer, 

2006). this statistic, at present, is limited to linear sets of elevation data, z(x), in which the 

y coordinate is ignored. the variance v(L) of the elevation differences along the track is 

computed for a large number N of equally-spaced locations:
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the roughness is thus given by the slope s(L):
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It is often found that the variance v(L) is a power function of the baseline L, so that if the 

variance is compared to the slope s0 at some particular baseline L0, a relation expressed by the 

second term in (B2.1.3) is found with an exponent H known at the Hurst exponent. Whether this 

exponent is constant over a broad range of baselines or depends in some simple way upon the 

scale is not yet known, nor is it understood how surface processes are related to this exponent, 

although some proposals have been made (Dodds and rothman, 2000). More progress can be 

expected as more closely spaced elevation data is collected on a number of different planets.

a disadvantage of the deinition (B2.1.2) is that a long, smooth slope also contributes to 

the variance because the elevations z(x) on a straight slope differ by a constant amount along 

the track. one would really like to ilter out all elevation differences except those close to the 

scale L. one solution to this problem is the median differential slope, which is based upon four 

points along the track. the two extreme points are used to deine a regional slope, which is 

then subtracted from the elevation difference of the two inner points to achieve a measure of 

slope that is not affected by long straight slopes, but responds to short wavelength variations on 

the scale of the distance between the inner points (Kreslavsky and Head, 2000). the array of 

four points is located at –L, -L/2, L/2, and L around an arbitrary zero point that slides along the 

spacecraft track. this differential slope sd is given by:
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the irst term is the slope between the inner points and the second term is the larger scale 

slope. the differential slope is zero for a long straight slope, as desired.

In the past, the study of roughness tended to focus on landing-site safety, but current efforts 

are also making progress on extracting information on the surface processes creating the 

roughness. one may expect to hear more about this in the future.

ancient giant impact. Do these two peaks represent two types of crust, as on the earth, or 

are these just areas with very different crustal thickness? We do not believe that Mars pos-

sesses plate tectonics, although it has been suggested that some plate processes may have 

acted in the distant past.

the Martian hypsometric curve offers an interesting lesson in the importance of referen-

cing elevations to the geoid. earlier plots of Mars elevations showed a Gaussian-like dis-

tribution of elevations similar to that of Venus or the Moon. only after a good gravity ield 

was measured and elevations referenced to a true geoid did the double-peaked character of 

Martian elevations become apparent.

2.2.3 Where are we? Latitude and longitude on the planets

latitudes and longitudes are the conventional means for locating features on the surface of 

a planet. However, before such a system can be deined, the pole of rotation must be estab-

lished. all systems of latitude and longitude are oriented around the north pole, which must 

Box 2.1 (cont.)
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figure 2.3 Hypsometric curves of the terrestrial planets and the Moon. Maximum and minimum 
elevations are also shown. these elevations refer to the maximum and minimum elevations averaged 
over square sample areas of different sizes, not the highest and lowest points on the planet’s surface. 
(a) Mercury data from 9830 radar elevations in PDS ile allMerc.txt. (b) Venus hypsometric curve 
derived from a 1° x 1° Magellan map of Venus from PDS dataset MGn-V-rDrS-5-toPo-l2-V1.0, 
ile toPoGrD-Dat. (c) earth, data is binned in 1/12 degree squares, from national Geophysical Data 
center ile tBaSe.BIn. (d) Moon, data is ¼ degree data from clementine lIDar from PDS dataset 
cleM1-l-lIDar-5-toPo-V1.0, ile toPoGrD2.Dat. light lines show separate curves for the 
nearside and farside. (e) Mars, ¼ degree Mola gridded data from PDS dataset MGS-M-Mola-
5-MeGDr-l3-V1.0, ile MeGt90n000cB.IMG. light lines show data separately for the northern 
and Southern crustal provinces. for this purpose, the planet was divided into two hemispheres by a 
great circle whose pole is located at 53° n and 210° e longitude.
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be determined in some absolute system of coordinates. the locations of the earth’s poles 

are determined astronomically, by the position of the extrapolated rotation axis among the 

stars in the sky. although the earth’s axis precesses slowly with a period of about 26 000 

yr, this gradual change is predictable and can be taken into account when referring to the 

pole position by citing the time, or epoch, at which the position is cited. the pole positions 

of the other planets are deined in a similar way, in terms of the celestial coordinates, the 

declination and right ascension, of their projected northern axis of rotation.

the choice of prime meridian for different planets is entirely arbitrary, but must be a 

deinite location. on the earth, we use the longitude of a point in Greenwich, uK, as the 

zero of longitude. on Mercury a crater known as Hun Kal deines the location of the 20° 

longitude. the choice of the 0° longitude on Venus fell to the central peak of a crater known 

as ariadne, while on Mars the 0° longitude passes through a small crater known as airy-0. 

Pluto’s 0° of longitude (at present) passes through the mean sub-charon point. as new 

bodies are mapped and their rotation axes determined, new choices for the prime meridian 

have to be made.

the prime meridians of the luid gas giant planets in the outer Solar System are much 

harder to deine and are based on the rotation rates of their magnetic ields rather than the 

shifting patterns of clouds in their atmospheres. Because the clouds rotate at different rates 

depending on latitude, they do not yield deinite rotation rates for the entire planet. for 

these planets an accurate rotation rate must be determined and that rotation rate, plus the 

epoch at which it was established, deines the prime meridian.

Venus presents an interesting cartographic problem because its spin is retrograde. Its 

north pole, nevertheless, lies on the north side of the ecliptic by convention and, also by 

cartographic convention, longitudes increase eastward from 0° to 360°.

the International astronomical union adopted a convention in 2000 that deines the 

latitude and longitude coordinate system used in locating features on the surface of planets. 

the irst principle deines the north pole of a Solar System body:

(1) the rotational pole of a planet or satellite that lies on the north side of the invariable 

plane will be called north, and northern latitudes will be designated as positive.

the second principle is more controversial and there is some disagreement between geo-

physicists and cartographers about the most sensible way to present longitudes:

(2) the planetographic longitude of the central meridian, as observed from a direction 

ixed with respect to an inertial system, will increase with time. the range of longi-

tudes shall extend from 0° to 360°.

  thus, west longitudes (i.e., longitudes measured positively to the west) will be used 

when the rotation is prograde and east longitudes (i.e., longitudes measured positively 

to the east) when the rotation is retrograde. the origin is the center of mass. also, 

because of tradition, the earth, Sun, and Moon do not conform with this deinition. 

their rotations are prograde and longitudes run both east and west 180°, or east 360° 

(Seidelmann et al., 2002).
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this convention means that Mars presents a left-handed coordinate system, a conse-

quence not favored by geophysicists. this debate is not resolved at the present time, so the 

user of cartographic data must carefully check what conventions are in use – it is very easy 

to download geophysical data for Mars and ind that one is working on a mirror image of 

the actual planet Mars.

2.3 Spectral representation of topography

Maps showing contours of elevation are not the only way of codifying topographic infor-

mation. Just as any function of spatial coordinates can be broken down into a fourier 

series in an inverse space of wavenumbers, topography can be represented as a sum of 

oscillating functions on a sphere. this mode of representation is known as harmonic 

analysis or spectral analysis and for many data sets is preferred over a purely spatial 

representation.

Spectral analysis averages elevations over all positions on a sphere and presents the 

information as a function of wavelength, not position. no information is lost in this pro-

cess: With the appropriate mathematical tools one can freely transform from space to wave-

length and back again.

the full details of harmonic analysis are too specialized for full presentation in this 

book. the interested reader is referred to a ine review of the entire subject by Wieczorek 

(2007). In this book it is enough to note that any function of latitude ϕ and longitude λ, 

such as elevation H(ϕ,λ), can be expressed as:

 
H H Ylm lm

m l

l

l

( , ) ( , )ϕ λ ϕ λ= ∑∑
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(2.10)

where l and m are integers and the Ylm(ϕ,λ) are spherical harmonic functions of order l and 

degree m. they are given in terms of more standard functions as:
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where the Plm  are normalized associated legendre functions given by:
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(2.12)

where δij is the Kronecker delta function and Plm are the standard, unnormalized legendre 

functions. these functions are tabulated in standard sources and, more importantly, can 

be computed with readily available software. there are many issues about the conven-

tional normalizations of these functions, which are not standardized across all scientiic 

disciplines.
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the functions Ylm are the spherical analogs of sines and cosines for fourier analysis. 
they are simple for small-order l and become more complex, with more zero crossings, as 
l increases. they possess 2|m| zero-crossings in the longitudinal direction and l – |m| in the 
latitudinal direction. thus Y00 is a constant, Y10, Yl-1, and Yl1 correspond to the displacement 
of a sphere from the center of mass (for example, a center-of-igure, center-of-mass offset) 
and the ive l = 2 terms describe an oblate or triaxial tidally distorted sphere. In general, 
as l increases the wavelength of the feature that can be represented by these harmonics 
decreases. this is made more precise by an approximate relation between the wavelength 

w of features that can be represented by spherical harmonics of order l: w a l l≈ +2 1π / ( ) ,  
where a is the planetary radius.

the expansion of topography in spherical harmonics makes the idea of orders of 

relief precise: the zeroth-order harmonic is just the radius, the irst is the center-of-mass 

center-of-igure offset, the second is the rotational or tidal distortion, etc. Harmonic 

coeficients for the topography of the planets to degree and order 180 are becoming 

common, and still higher degrees exist for the earth and are planned for the other plan-

ets as suficiently precise data becomes available. In addition to topography, the geoid 

and gravity ields are also represented by spherical harmonics, a format that makes 

many computations of, for example, global isostatic compensation, much simpler than 

it is for spatial data.

the spherical harmonic functions are orthogonal after integration over the com-

plete sphere, so that the harmonic coeficients Hlm can be obtained from the topography 

H(ϕ,λ) by:
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one can freely pass from the spatial representation of topography to the harmonic 

representation and back again. there is no loss of information, nor any saving in the amount 

of data to be stored for one or the other representation.

Just as the hypsometric function attempts to distil useful global information from the 

map of elevations, a similar extraction of data is often made from the harmonic coeficients. 

this data contraction is called the spectral power and is a measure of how much of the top-

ography is due to a particular wavelength. the rMS spectral power density collapses a full 

set of l2+2l+1 numbers for harmonic coeficients to degree and order l down to a set of only 

l numbers by summing over all orders for each degree:

 
S Hl lm

m l

l

= ∑
=−

2 .
 

(2.14)

the rMS spectral power densities given by equation (2.14) are plotted in figure 2.4 for 

each of the terrestrial planets (excluding Mercury) and the Moon. except for the Moon, 

most of the rMS power densities on this plot rise with increasing wavelength, so each body 
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has more power in longer-wavelength topography. another way of saying this is that the 

slopes of the surfaces are approximately independent of their scale. It is popular to call this 

a fractal relationship, but it is unclear, at present, exactly what this means. the earth and 

Venus are comparably smooth at short wavelengths, while Mars is rougher than both and 

the Moon is rougher still. the Moon’s roughness does not rise with increasing wavelength 

as fast as that of the larger planets.

William Kaula worked extensively on harmonic representations of topography and his 

studies of the earth’s topography led him to formulate what we will call here “Kaula’s 

 second law,” which is that the rMS topography depends on the inverse order, 1/l. Because 

wavelength depends on the inverse order as well, his law states that the power is directly 

proportional to the wavelength. the prediction of this law is shown on figure 2.4 and it 

does seem to hold fairly well for the major planets, but not for the Moon. the deviation 

shown here for the Moon is relatively new: It was not known before the data from the 

Kaguya laser altimeter were analyzed.

Spectral representations are, at present, dificult to interpret (see, e.g. the discussion by 

Pike and rozema, 1975). Spectral data at a very small scale is widely used for computa-

tions of “traficability” of vehicles across terrains and for designing vehicle suspension 

systems, but its use in geologic interpretation has been limited. the reason for this may 

be that the spectral method averages over a wide variety of different terrain types that are 

shaped by different processes and so loses the signatures characteristic of individual proc-

esses. Whatever the reason, it is currently an analysis technique in search of an interpret-

ation,  although some suggestive models have provided more insight into the interpretation 

of such data (Dodds and rothman, 2000).
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figure 2.4 topographic power spectra of the terrestrial planets and the Moon, excluding Mercury for 
which the necessary data does not yet exist. lunar spectral data are from the Kaguya data set (araki 
et al. 2009). Spectral data on earth, Venus, and Mars are from Mark Wieczorek’s website, http://
www.ipgp.fr/~wieczor/SH/SH.html, iles SrtMP2160, Venustopo719.shape and Marstopo719.
shape, respectively.
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Further reading

newton’s Principia is tough going, but full of surprising results. It is astonishing how far 

newton went with the theory of the earth’s igure (newton, 1966). you do not need to know 

latin to read the translation of the Principia, but you do need to be patient and resourceful. 

Harold Jeffreys was deeply interested in the igure of the earth, the radau approximation, 

and the theory of the Moon’s triaxial igure. there are six editions of his famous book The 

Earth, but the third (Jeffreys, 1952) and fourth present the apex of his insight into this 

problem. the problem of determining the shape of the earth has been of major interest to 

astronomers and mathematicians since newton. the early history of investigation of the 

igure of the earth is exhaustively told in the full language of mathematics by todhunter 

(1962). More modern extensions are well covered in chandrasekhar (1969) and Jardetzky 

(1958). Kaula’s book (Kaula, 1968) is now very dated in its facts, but he covered many of 

the methods of planetary geophysics, particularly geodesy, in great detail. the nature of the 

geoid on earth and its determination are well discussed in lambeck (1988). the details of 

modern planetary cartography are described in book form by Greeley and Batson (2000). 

Spectral analysis of both topography and gravity are the subjects of a very recent and very 

clear review by Mark Wieczorek (2007) that offers the simplest introduction to spherical 

harmonics that I am aware of. He also goes to some trouble to explain the different normal-

ization conventions in the geophysical literature.

Exercises

2.1 A whirling moon

Saturn’s moon Iapetus is currently synchronously locked to Saturn, with a rotation (and 

orbital) period of 79.3 days. In spite of its slow rotation, Iapetus has a considerable equator-

ial bulge, a−c ≈ 35 km (table 2.3). Iapetus’ density is not very different from that of water 

ice, so it can be treated as an approximately homogeneous body. If Iapetus’ equatorial 

bulge is a fossil remnant from a time when it was spinning faster than at present, estimate 

the minimum initial period of Iapetus’ rotation (explain why this is a minimum estimate). 

What do you think may have happened to Iapetus?

2.2 Hot Jupiteus shaped like water melons

Planet WaSP-12b circles a Sun-like star about 600 light years from earth in the constella-

tion auriga. It is a hot Jupiter planet, with a mass equal to 1.41 times that of Jupiter, radius 

1.83 times larger than Jupiter, but circles only 0.0229 au (astronomical units) from its 

star with a period of 1.0914 days. use equations (2.6) and (2.7), suitably generalized for 

a planet orbiting a star, to compute the tidal distortion of this planet, assuming that it is 

synchronously locked to its star (which is almost certainly true). tabulate the lengths of the 

three principal axes a, b, and c. What do you think this implies for the planet? for more on 

this system, see li et al. (2010).
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2.3 The axis of least effort

the kinetic energy of rotation of a body with a principal moment of inertia I about some
 

axis is given by E I= 1

2
2ω , where ω is the angular rotation rate (radians/s). the

 
angular

 
momentum L of a rotating body is given by L = Iω. for ixed angular momentum, show 
that the kinetic energy of a rotating body is a minimum if it rotates about the axis with the 
maximum moment of inertia C of the three principal moments C ≥ B ≥ A.

Extra Credit: If a body is rotating stably about its C axis and some internal process in 

the body redistributes its internal mass and switches the C and B principal axes, what hap-

pens to this body? note that a process of this kind has been proposed for, among others, 

enceladus (nimmo and Pappalardo, 2006).
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